
Standard Form 298 (Rev 8/98)
Prescribed by ANSI Std. Z39.18

225-578-1496

W911NF-10-1-0495

58840-CS-DRP.8

Ph.D. Dissertation

a. REPORT

14. ABSTRACT

16. SECURITY CLASSIFICATION OF:

1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION AVAILIBILITY STATEMENT

6. AUTHORS

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES

15. SUBJECT TERMS

b. ABSTRACT

2. REPORT TYPE

17. LIMITATION OF
ABSTRACT

15. NUMBER
OF PAGES

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

5c. PROGRAM ELEMENT NUMBER

5b. GRANT NUMBER

5a. CONTRACT NUMBER

Form Approved OMB NO. 0704-0188

3. DATES COVERED (From - To)
-

UU UU UU UU

25-10-2015

Approved for public release; distribution is unlimited.

Novel Texture-based Probabilistic Object Recognition and
TrackingTechniques for Food Intake Analysis and Traffic
Monitoring

More complex image understanding algorithms are increasingly practical in a host of emerg-

ing applications. Object tracking has value in surveillance and data farming; and object

recognition has applications in surveillance, data management, and industrial automation.

In this work we introduce an object recognition application in automated nutritional intake

analysis and a tracking application intended for surveillance in low quality videos. Auto-

mated food recognition is useful for personal health applications as well as nutritional studies

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department
of the Army position, policy or decision, unless so designated by other documentation.

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS
(ES)

U.S. Army Research Office
 P.O. Box 12211
 Research Triangle Park, NC 27709-2211

Object Recognition; Tracking

REPORT DOCUMENTATION PAGE

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

10. SPONSOR/MONITOR'S ACRONYM(S)
 ARO

8. PERFORMING ORGANIZATION REPORT
NUMBER

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER
Supratik Mukhopadhyay

Robert Di Biano

0G10BC

c. THIS PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

Louisiana State University and A&M College
Office of Sponsored Programs
202 Himes Hall
Baton Rouge, LA 70803 -0001

ABSTRACT

Novel Texture-based Probabilistic Object Recognition and TrackingTechniques for Food Intake Analysis and Traffic
Monitoring

Report Title

More complex image understanding algorithms are increasingly practical in a host of emerg-

ing applications. Object tracking has value in surveillance and data farming; and object

recognition has applications in surveillance, data management, and industrial automation.

In this work we introduce an object recognition application in automated nutritional intake

analysis and a tracking application intended for surveillance in low quality videos. Auto-

mated food recognition is useful for personal health applications as well as nutritional studies

used to improve public health or inform lawmakers. We introduce a complete, end-to-end

system for automated food intake measurement. Images taken by a digital camera are ana-

lyzed, plates and food are located, food type is determined by neural network, distance and

angle of food is determined and 3D volume estimated, the results are cross referenced with

a nutritional database, and before and after meal photos are compared to determine nutri-

tional intake. We compare against contemporary systems and provide detailed experimental

results of our system's performance. Our tracking systems consider the problem of car and

human tracking on potentially very low quality surveillance videos, from �xed camera or

high ying Unmanned Aerial Vehicle (UAV). Our agile framework switches among different

simple trackers to �nd the most applicable tracker based on the object and video proper-

ties. Our MAPTrack is an evolution of the agile tracker that uses soft switching to optimize

between multiple pertinent trackers, and tracks objects based on motion, appearance, and

positional data. In both cases we provide comparisons against trackers intended for similar

applications i.e., trackers that stress robustness in bad conditions, with competitive results.

Novel Texture-based Probabilistic Object Recognition and Tracking
Techniques for Food Intake Analysis and Traffic Monitoring

Robert J. DiBiano
B.S., Lamar University, 2004
M.S., Lamar University, 2008

A Dissertation
Submitted to the Graduate Faculty of the

Louisiana State University and
College of Engineering

in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in

The Department of Electrical & Computer Engineering

Supratik Mukhopadhyay, Co-Chair
Xin (Shane) Li, Co-Chair

Jerry L. Trahan
Corby Martin

Bahadir Gunturk
Gerald M. Knapp

October 2, 2015
Baton Rouge, Louisiana

Keywords: Machine Vision, Food Recognition, Object Recognition, Texture Analysis,
Co-occurrence matrix, Graph-cuts, GrabCuts, Food-intake, Energy Intake, Nutrition

Assessment, Portion size estimation, Object Tracking, Motion Model, Appearance Model,
Gaussian Mixture Background Subtraction, Optical Flow, Full Motion Video,

Confidence-based Spatio-temporal filtering, Agile Tracking, Ensemble Algorithm.
Copyright 2015, Robert J. DiBiano

Novel Texture-based Probabilistic Object Recognition and Tracking
Techniques for Food Intake Analysis and Traffic Monitoring

Robert J. DiBiano

(ABSTRACT)

More complex image understanding algorithms are increasingly practical in a host of emerg-
ing applications. Object tracking has value in surveillance and data farming; and object
recognition has applications in surveillance, data management, and industrial automation.
In this work we introduce an object recognition application in automated nutritional intake
analysis and a tracking application intended for surveillance in low quality videos. Auto-
mated food recognition is useful for personal health applications as well as nutritional studies
used to improve public health or inform lawmakers. We introduce a complete, end-to-end
system for automated food intake measurement. Images taken by a digital camera are ana-
lyzed, plates and food are located, food type is determined by neural network, distance and
angle of food is determined and 3D volume estimated, the results are cross referenced with
a nutritional database, and before and after meal photos are compared to determine nutri-
tional intake. We compare against contemporary systems and provide detailed experimental
results of our system’s performance. Our tracking systems consider the problem of car and
human tracking on potentially very low quality surveillance videos, from fixed camera or
high flying Unmanned Aerial Vehicle (UAV). Our agile framework switches among different
simple trackers to find the most applicable tracker based on the object and video proper-
ties. Our MAPTrack is an evolution of the agile tracker that uses soft switching to optimize
between multiple pertinent trackers, and tracks objects based on motion, appearance, and
positional data. In both cases we provide comparisons against trackers intended for similar
applications i.e., trackers that stress robustness in bad conditions, with competitive results.

Acknowledgments

This research was supported by National Institute of Health (NIH) grants R21AG032231 and
R01DK089051. The use of their extensive and detailed food image and nutritional database
was invaluable to the completion of this work.

I would like to acknowledge the staff at Pennington Biomedical Research Laboratory for
their advice and expert knowledge in the area of food nutritional information and also for
providing their “free living” food data. The content is solely the responsibility of the authors
and does not necessarily represent the official views of the National Institute of Health.

This project is supported by Army Research Office (ARO) under Grant #W911-NF1010495.
Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the ARO or the United States
Government.

I’d also like to thank all the members of my committee, my sister, and the other members
of my research group: Jerry Weltman, Malcolm Stagg, Saikat Basu, and Manohar Karki for
their time, encouragement, advice, and support.

iii

Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 Food Recognition and Portion Size Estimation 2

1.1.2 Car and Human Tracking . 3

1.2 Contributions to the Dissertation . 4

1.3 Overview . 6

2 Related Work 8

2.1 Food Analysis . 8

2.1.1 Agricultural Analysis . 8

2.1.2 Meal Analysis . 10

2.1.3 Discussion . 17

2.2 Car and Human Tracking . 17

2.2.1 Optical Flow . 17

2.2.2 The Drift Problem . 18

2.2.3 Early Tracking, the Kalman Filter . 19

2.2.4 Tracking vs. Detection and Tracking by Detection 19

2.2.5 Enhanced Template Matching . 20

2.2.6 Enhanced Optical Flow . 21

2.2.7 Enhanced Difference Images . 21

2.2.8 Layer Representations . 22

iv

2.2.9 Advanced Filtering . 22

2.2.10 Machine Learning Based Tracking . 23

2.2.11 Part Based Models . 26

2.2.12 Non-Rigid Objects . 27

2.2.13 Limb Tracking . 27

2.2.14 Surveillance . 28

2.2.15 Discussion . 28

3 Preliminaries 31

3.1 Graph cuts segmentation and max-flow min-cut theorem 31

3.1.1 Segmentation as Energy Minimization [28] 32

3.1.2 Energy minimization as Known Graph Problem [28] 34

3.1.3 Graph Cuts . 35

3.1.4 Muticlass Graph Cuts and Efficient Approximations 35

3.1.5 GrabCuts [149] . 38

3.1.6 Discussion . 40

3.2 Texture Analysis . 40

3.2.1 Statistical . 41

3.2.2 Structural . 45

3.2.3 Transform Based . 45

3.2.4 Model Based Approaches . 51

4 Food Image Analysis for Measuring Food Intake in Free Living Conditions 55

4.1 Introduction . 55

4.2 Contributions . 56

4.3 Methods and Algorithms . 56

4.3.1 Preprocessing . 57

4.3.2 Segmentation . 61

4.3.3 Classification . 63

v

4.3.4 Volume Estimation . 71

4.4 Results . 77

4.5 Discussion . 77

4.5.1 Main sources of error . 79

4.5.2 Interesting Cases . 79

4.5.3 “One versus the rest” advantages and features 81

5 An Agile Framework For Real-Time Visual Tracking in Videos 82

5.1 Introduction . 82

5.2 Contributions . 83

5.3 Related Work . 83

5.4 The Proposed Approach . 84

5.4.1 Image Stabilization . 84

5.4.2 Track Starting . 85

5.4.3 The Agile Tracking Framework . 86

5.5 Implementation of our Approach . 94

5.6 Results and Comparative Studies . 95

5.7 Conclusions . 95

6 MAPTrack: a Probabilistic Real Time Tracking Framework by Integrating
Motion, Appearance and Position Models 97

6.1 Introduction . 97

6.2 Contributions . 98

6.3 Related Work . 98

6.4 The Proposed Approach . 99

6.4.1 Image Stabilization . 100

6.4.2 Automated Track Initialization . 100

6.4.3 The MAPTrack Framework . 101

6.5 Implementation Details . 106

vi

6.6 Results and Comparative Studies . 106

6.7 Conclusions . 107

7 Conclusions and Future Work 111

7.1 Food Analysis . 111

7.2 Tracking . 112

7.3 Future Work - Food Recognition . 112

7.4 Future Work - Tracking . 115

vii

List of Figures

1.1 Apps like myfitnesspal require manual data entry. 2

1.2 Volume can be estimated from 2d digital images. 3

1.3 Low quality aerial car and human videos. 4

3.1 Edata measures similarity of each pixel to some model; more similar costs less
energy to label. 33

3.2 Esmooth measures similarity of each pixel to is neighbors; each differently la-
beled neighbor costs energy. 34

3.3 Node for each class and pixel, higher energy costs convert to lower edge weights. 35

3.4 Find the minimum cost cut to divide the graph into 2 subgraphs, each con-
taining one class node. 36

3.5 Swap-move . 37

3.6 Expansion-Move . 38

3.7 Small number of user provided seed pixels for initial conditions. 39

3.8 left:very rough user provided input, right: accurate results 39

3.9 First order statistics can be derived from a histogram. 42

3.10 Gray Level Run Length Matrix (right). 43

3.11 Gray Level Run Length Vector. 43

3.12 Gray Level Co-Occurrence Matrix (right). 43

3.13 Neighboring Gray Level Dependence Matrix. 44

3.14 Angle Measurement Technique. 45

3.15 Extracting textural primitives from an image. Primitive frequency and clus-
tering characterize texture. 46

viii

3.16 Convolution of image “object” by Gaussian mask “psf”. 47

3.17 lena.png (left), horizontal Sobel filtered (middle), and vertical Sobel filtered
(right). 47

3.18 Eigenfilters computed from the ORL Face database(Eigenfaces.png, Source:
Ylebru - Wikimedia Commons). 48

3.19 All periodic functions can be approximated by the sum of a series of sine and
cosine functions. 48

3.20 Frequency Spectrum. 49

3.21 Discrete Cosine Transform Filters. 50

3.22 Fast Fourier Transform Results. 50

3.23 Gabor Filters. 51

3.24 A Meyr Wavelet. 51

3.25 A simple Markov chain. 52

3.26 A Markov Mesh. 53

4.1 High level block diagram of automated food photo analysis. 57

4.2 Feature rankings. 58

4.3 Yellow fluorescent light spectrum.png(left), Spectrum of blue sky.png(right)
(Source: Deglr6328 - Wikimedia Commons) 60

4.4 Segmentation. 63

4.5 Feature vector generation. 66

4.6 Classification results. 66

4.7 OVTR Classification. 66

4.8 OVTR Training. 68

4.9 Feature rankings. 70

4.10 left: raw image, middle: perspective transform, right: standard with known
weight . 73

4.11 left: raw image, middle: affine transform, right: standard with known weight 74

4.12 Volume estimation on solid foods. 74

4.13 Best linearity. 75

ix

4.14 Worst linearity. 76

4.15 Volume estimation on liquid foods. The two different curves for bowl A and
B are clearly visible . 76

4.16 Classification results. 77

4.17 Detailed testing results. 78

4.18 Lighting differences. 79

4.19 Multimode foods. 80

4.20 Multiple types/textures (top left: oatmeal, top right: garlic toast, bottom
left: cream of wheat. 80

5.1 Schematic representation of our approach. 84

5.2 Confidence value update for the frames (for increasing confidence) 86

5.3 Results from the agile tracker. 96

5.4 The left one represents the output from the agile tracker and the right one
represents that from TLD, which has trouble with nearly identical objects. . 96

6.1 Schematic representation of our approach. 99

6.2 a) Image b) Motion Pixels c) Appearance Pixels d) Projected Position Pixels103

6.3 Foreground and Background Color Histograms of the two cars. 105

6.4 Output from MAPTrack (Left) and TLD (right). TLD switches randomly
between similar objects in noisy videos. 106

6.5 MAPTrack results for TUD videos. 107

6.6 Image of people and cars, the images are the ROI images, followed by MCP,
CP, Velocity Image and the Weighted Composite Image from top to bottom. 109

6.7 ROC curve for the tracker. 109

6.8 Results from MAPTrack. 110

7.1 Confusion matrix. 113

x

List of Tables

3.1 Swap-move edge weights . 37

3.2 Expansion-move edge weights . 38

4.1 Final feature list. 69

4.2 Volume estimation results. 75

4.3 Classification results. 75

5.1 Comparison of the various trackers - number of frames after which the trackers
lost track for the first time . 95

5.2 Comparison of the various trackers - number of frames after which the trackers
lost track for the first time(contd.) . 95

6.1 The different states of the tracked object. 107

6.2 Comparison of single-object trackers in (Kalal et al., 2010) with MAPTrack.
Shows the number of frames after which the trackers lost track for the first time108

6.3 Tracker results for TUD (Andriluka et al., 2008). 108

6.4 Results from the tracker (Metric used as in (Smith et al., 2005) [160]). Scores
for configuration distance, multiple objects, multiple tracks, false positives,
and tracker purity are defined. 109

xi

Chapter 1

Introduction

1.1 Motivation

Computers are smaller, more powerful, and cheaper than ever before, making them practical
for an increasing number of applications. So more complex image understanding algorithms
are increasingly practical in a host of emerging applications. Computer vision is used in
manufacturing and food processing to differentiate and characterize objects. Vision systems
also have tracking and security applications. And most significantly, databases accessible
from the Internet contain massive amounts of image and video data, and are being continually
added to. Hence better automated analysis of images and video is newly possible, and has
nearly limitless applications. In this work we introduce an object recognition application in
automated nutritional intake analysis and a tracking application intended for surveillance in
low quality videos.

While the 2 problems may seem different at first glance, diverse machine vision problems
utilize similar knowledge and algorithms. Background noise and predictable errors must
be accounted for in preprocessing. This may involve accounting for lighting differences or
blurring in a single image, or camera movements in a video. Objects of interest must be
segmented apart from the background in both cases to enable analysis. This may be done by
color, texture, edge, or motion data. And finally objects of interest must be analyzed. In the
case of food recognition this means identification, and estimating the position and volume
of the object. For video tracking this means identification and estimating the current and
future position of the object. The domain specific constraints and best features to use vary
by application, but these ideas of image restoration, segmentation, feature extraction, and
feature matching apply almost universally in machine vision.

1

Robert J. DiBiano Chapter 1. Introduction 2

Figure 1.1: Apps like myfitnesspal require manual data entry.

1.1.1 Food Recognition and Portion Size Estimation

Food recognition has been applied in the past in an agricultural setting to assist robotic
picking, grade by ripeness/size/color, and locate surface defects/bruising/mold [48]. There
have also been applications in grain sorting [7], and weed control [32]. Research on food
recognition as meal recognition is a very recent evolvement.

An AI-hard or AI-complete problem is one that requires complex and nuanced judgments
about the world, such that solving it would be synonymous with solving the general prob-
lem of AI. General purpose food recognition is an AI-hard problem, which can never be
completely solved from image data alone. Most glaringly, the composition of a food cannot
always be accurately determined by looking at its surface. For example breaded and fried
foods all look similar. Even with context taken from nearby foods and the image back-
ground, and intuitive guesses taken from the general shape of the breaded blobs, human
observers can generally not distinguish between different breaded foods. Composition may
vary widely within a single food type, or food with a similar composition may have widely
variable appearances. An actual instance of food may legitimately belong to multiple types,
and one type may overlap with or be a subset of another.

Automated food recognition systems have practical use for personal health applications,
to monitor food intake and provide dietary reports and statistics. Automatic food intake
estimation cross referenced with nutritional database info can provide immediate feedback
on dietary deficiencies, and the information could be used to automatically make suggestions
on how to correct the imbalance. Manual dietary monitoring apps (ex. myfitnesspal.com in
Fig. 1.1) require detailed data entry after every meal; and even with these limitations such
applications are widely used. The process is streamlined as much as possible; but the user
must manually pick every food type off a list and do portion size estimation at each and
every meal.

Automated food recognition and portion size estimation is also useful for data collection for
health studies such as [122]. Indeed this data collection is already being done manually [190],
requiring training and many man-hours spent by human graders on grinding, repetitive work.
Nutritional studies are useful to provide statistics that help improve public health, help the
military efficiently design nutritious meals, and impact governmental laws and regulations
applying to food.

Robert J. DiBiano Chapter 1. Introduction 3

Figure 1.2: Volume can be estimated from 2d digital images.

The majority of existing food recognition schemes are limited to distinguishing between a
handful of foods, and therefore of little practical value for these applications. A good system
should work on large if not open ended numbers of foods and provide a sorted list of most
likely candidates, similar to how spelling correction algorithms work. Because of the AI-hard
nature of the problem a food recognition system should be supplemented with inferences,
expert knowledge, and metadata wherever possible.

Portion size estimation is also a difficult problem. Human experts need practice to become
accurate, and even then the error is around 10 percent or more for some food types [190].
This is not an AI-hard problem though, and computers are better suited for this type of
calculation than humans. Still, with only single 2d images as input(Fig. 1.2), the problem is
nontrivial. Scale and positioning are not immediately apparent. Some foods have a strong
relation between visible surface area an volume and some do not. Liquid foods have none at
all.

1.1.2 Car and Human Tracking

Tracking is a challenging problem; input videos are often blurry and or low resolution due
to distance, hardware limitations, or compression (Fig. 1.3). There is inherent difficulty in
recognizing the shape of 3 dimensional objects from 2d data after rotations. Moving through
shadows or variable light level may change the appearance of an object, as could being lit by
artificial lighting with various different spectra. The sensors used for most computer vision
systems have a very low dynamic range, often reducing image quality. Fluid or articulated
objects are often hard to characterize with a template based model. There is the problem of
how and when to start tracking an object, and the problem of detecting tracking failures and
ending a track. Objects that are partially occluded will change in appearance, and if fully
occluded, this should be detected separately from a normal track loss if possible. Lost or
occluded tracks need to be linked with later tracks when the object shows up again. Finally,
there is the “drift problem”: if an object changes in appearance slightly, the tracker needs
to adjust its internal model of the object to compensate; over time this can lead to modeling
and therefore tracking the wrong object. So there is always a trade off between stability and
adaptability.

Tracking has useful applications in robotics, navigation (by tracking the position of the ter-
rain relative to the observer), Human-machine interface (control a computer with gestures),

Robert J. DiBiano Chapter 1. Introduction 4

Figure 1.3: Low quality aerial car and human videos.

as well as law enforcement and national security. Being able to automatically track a car
or human automatically over many miles and hours from satellite data would be useful for
security applications. One of the holy grails of video processing is to be able to characterize
and search video content automatically, without relying on nearby text or user generated
tags. Automatic tracking information is a necessary input to later layers for activity recog-
nition on track-based activities, and the activities would be amalgamated into searchable
attributes, actions, and behaviors.

There are any number of tracking algorithms, and many of them are reasonably good; but
tracking is a complex problem and there’s still plenty of room for improvement. Each exist-
ing tracking method makes implicit assumptions about its application, and has individual
strengths and weaknesses, so domain specific trackers are useful. Lately, tracking by recog-
nition has become a dominant trend, but it has weaknesses. Track starting by recognition
will only work if you have a representative dataset of targets; so it can’t be directly used for
general purpose tracking. Many trackers work poorly on fluid or articulated objects, since
the size, shape, and appearance of these objects can alter suddenly and drastically. Trackers
that fall back heavily on object recognition (to recover lost tracks for example) will have
trouble tracking multiple similar objects; a standard situation in car/human tracking.

1.2 Contributions to the Dissertation

This dissertation addresses the problem of identifying and estimating the nutritional value
of food via textural analysis on still images, and tracking humans and cars, via motion,
appearance, and positional information in videos. Although the problems are different,
some of the methods used overlap, and textural analysis of the background can provide
useful context clues for video processing. Many of the methods used can be adapted to other
applications.

Measuring the type and amount of food intake of free-living (outside controlled clinical re-
search centers) people is an important task in nutrition research. One practical method,
called the Remote Food Photography Method (RFPM) [119], is to provide camera-equipped
smartphones to participants, who are trained to take pictures of their foods and send these

Robert J. DiBiano Chapter 1. Introduction 5

pictures to the researchers over a wireless network. These pictures can then be analyzed
by trained raters to accurately estimate food intake, though the process can be labor inten-
sive. In this dissertation, we describe a computer vision application to estimate food intake
from the pictures captured and sent by participants. We describe the application in de-
tail, including segmentation, pattern classification, volume estimation modules, and provide
comprehensive experimental results to evaluate its performance.

The food recognition problem is intended to be a complete system, potentially fully auto-
mated from beginning to end. i.e., food snapshot in, nutritional intake out. Because of the
AI completeness of the problem, it also necessarily allows for manual intervention at any
point along the process. Food images are taken before and after meals. The images are
scanned and foods are located and identified. Scale and rotational information is used along
with information about the foods to estimate volume from visible surface area. The food
intake information is then ready to be cross referenced with a nutritional database.

This system makes several contributions. It is the most advanced published complete system
of its type. It has significant and more extensive data on 2d food volume estimation than
any study of its type, and compares the results against those of trained human analysts.
It presents a novel food recognition scheme, which provides multilabel classification on a
large number of classes parallelizably, in linear time with number of classes, and generates
meaningful runners up. Much of research [118, 125, 144, 145, 205, 207] in the area does not
meet these requirements, which are absolutely necessary to solve the problem. To the best
of our knowledge, at the time it was published our food recognition scheme was the most
advanced and accurate system of its kind that fulfilled these requirements. Our system was
published in the Proceedings of the SPIE on Medical Imaging [51].

Rather than being a complete system, the tracking systems (Agile Tracker and MAPTrack)
are intended to be part of a larger system; presumably with image understanding steps later
in the process; they are specifically intended for car and human tracking in that they make
certain assumptions - such as the objects they track can move, are all around the same
size, their color is significant but multiple different objects may also look nearly identical,
etc. They are intended for automated car and human tracking, and use an automated track
starting algorithm to decide what and when to track. The videos to be intended for analysis
may be grayscale or color, and will be low very quality with parts of objects missing even in
absence of occlusions, can interrupted by static or missing frames, and contain rotations and
changes in viewpoint and scale. Specifically, the videos we used to define the problem were
drawn from the /acrshortvirat Aerial Dataset and /acrshortvirat Ground Dataset [178].

After track starting and image stabilization, our agile tracking framework switches among
several simpler trackers depending on the video’s and target’s states. If the current tracker’s
performance metric falls below some threshold, a new tracker is chosen based on the proper-
ties of the video and object being tracked. It can handle near passes of similar objects and
distinguish between humans and cars.

The agile tracker makes several contributions. Firstly, our agile tracker provides a domain

Robert J. DiBiano Chapter 1. Introduction 6

specific solution applicable to car and human tracking both in poor quality aerial videos
and good quality surveillance videos. Although intended to be part of a larger system, it is
designed to be a complete tracking system suitable for practical stand alone application in
the specified domain. In contrast to similar surveillance trackers, our tracker uses multiple
main tracking engine types and can switch between them when performance drops. Sec-
ondly, the agile framework provides a novel method of merging multiple trackers to produce
better results than any individual in the ensemble, by allowing each tracker to run in the
situations it is most applicable to. This relies on an estimate of tracker applicability that the
agile framework generates from various video and object metrics. Our agile tracker was pub-
lished as a workshop in the 39th Annual International Computers, Software & Applications
Conference (COMPSAC) [20].

Our improved tracker, MAPTrack, uses a probabilistic scheme to merge motion, appearance,
and positional models instead of switching between tracking schemes. The contribution each
model makes to the amalgamated model is determined by object and video properties. The
motion model distinguishes objects of interest from the background based on their relative
motion. The appearance model characterizes an object based on its color composition, or its
color composition versus that of the environment. The position model estimates an object’s
location based on its previous positions, velocity, and acceleration. Because it combines the
strengths of multiple models it is robust to abrupt changes in lighting, can follow an object
through occlusions, and can track multiple closely spaced objects.

MAPTrack improves on the agile tracker by using mean shift filtering to integrate motion,
appearance, shape, and expected position into one hypothesis, providing “soft switching”
that is less threshold sensitive and accounts for multiple models simultaneously. Rather
than handle occlusion/track loss and becoming stationary in separate modules like previous
approaches, they are integrated into the soft switching equations, providing better robustness
in poor conditions. This system was published in the International Conference on Computer
Vision Theory and Applications (VISAPP) [21] and has a patent pending [129].

1.3 Overview

Chapter 2 is a review of the literature on similar systems, and systems that have been applied
to similar problems. Chapter 3 defines the problems of object recognition and tracking, and
explains the various algorithms and processes used to accomplish our objectives. It covers
the background of neural networks and the backpropagation algorithm. It defines mixture
models and explains the usage of Gaussian mixture models in foreground/background seg-
mentation. It discusses the color appearance model used and the justification for using the
pseudo-probabilities it generates. It discusses graph cuts in detail, and explains its applica-
tion to image segmentation, and reviews and explains all major textural analysis methods.
Chapter 4 details the design of the complete food recognition and portion size estimation
system and discusses the results. Chapter 5 discusses an automatic track starter and the

Robert J. DiBiano Chapter 1. Introduction 7

agile tracking framework. Chapter 6 details MAPTrack, a human/car tracking framework
based on motion, appearance, and position. Chapter 7 is conclusions and future work.

Chapter 2

Related Work

2.1 Food Analysis

Food analysis can be subdivided into 2 categories; agriculture analysis and meal analysis.
Agricultural analysis involves applications like grading and sorting raw foods or weed identi-
fication, and has simple, predictable constraints. Meal analysis involves analyzing prepared
food in a meal on someone’s plate. Originally, nearly all food analysis research was for in-
dustrial applications. As technology advanced meal analysis became feasible, and split off
as a separate area.

2.1.1 Agricultural Analysis

There have been a number of automated food detection and classification methods used for
agricultural applications, and to a lesser extent health and medical applications. Throughout
the 90’s researchers were starting to explore using machine vision for fruit, nut, grain, and
meat grading [31]. These techniques mostly consisted of analyzing the silhouettes of food on
a flat conveyor belt, or examining the color. These systems used whole fruit or vegetables
in an industrial setting, so analyzing silhouettes was often a big part of the process. They
were generally intended to separate one specific food type into grades or classes, or at most
distinguish between a handful of food types. These methods usually involve machine vision
and machine learning, and have preprocessing, segmentation, and classification steps [53].
In [31], early food analysis techniques are surveyed. Another good survey of pre-meal analysis
food analysis is given in [202,203]. More recent developments in industrial food analysis are
reviewed in [48] and later in [153].

8

Robert J. DiBiano Chapter 2. Related Work 9

Preprocessing

Perceived colors vary depending on the type and amount of lighting, and segmentation/classification
algorithms may work better on smoothed or cleaned up data - so some kind of preprocess-
ing was usually necessary. In a review of image processing used in food evaluation prior to
2004, [53] notes that the Hue Saturation Intensity (HSI) color space was generally preferred
for food analysis applications, or sometimes Lightness A B (LAB). Preprocessing consisted
of either simple color space transformations, or filtering operations. They note that low pass
type filters can be used to smooth out noise, or high pass types can enhance defects/edges.
In practice, median filtering was often used for edge-preserving smoothing on low quality
images, but is a nonlinear filtering operation, and therefore slower.

LAB features have been found to be best for measuring color across the curved surfaces of
fruit with the A and B channels, maintaining more constant values across curvatures, glossy,
and shadowed areas [127]. In [202], the author categorizes HSI as a human oriented color
space (because it tries to create channels meaningful to human perception) and LAB as an
instrumental one, which may explain this result.

Segmentation

Segmentation involves separating out the foods to be classified, labeling each pixel as “food”
or “background”. Most segmentation in the earliest period was threshold based or re-
gion(growing) based [53]. The authors of [179] developed a way to segment grain kernels by
modeling them as ellipses.

Classification

Classification is the process of automatically categorizing unknown data samples into groups
based on similar properties. Normally, examples of each class have been previously observed,
and used to make generalizations about that class. The most common classification methods
before 2004 were fuzzy classification and Artificial Neural Networks (ANN) [53]. A few years
later, ANN and Statistical Learning (SL) were the standard machine learning techniques
for food quality evaluation [54]. In [116, 117], Majumdar et al. experimented with classi-
fying bulk grain samples by color and texture analysis, using Color Co-occurrence Matrix
(CCM) and Run Length Matrix (RLM) features. CCM features were later used to distin-
guish between 6 weed classes [32], using several different types of neural networks, including
counterpropogation, backpropagation, and radial basis function. Backpropagation showed
the best speed and results.

Robert J. DiBiano Chapter 2. Related Work 10

Color and Texture Analysis

All Classification schemes classify food based on some features, so choosing descriptive fea-
tures is just as important as the classification algorithm. Average color is the most obvious
and descriptive feature; but doesn’t give enough information alone to classify foods. Tex-
tural features are any features that relate to multiple pixels at different spatial locations
simultaneously; they can involve information about color differences as well as edges. Tex-
tural features can be categorized into 4 groups [22]: statistical, structural, model based and
transform based. In [203] the author noted that of these four groups, statistical textures are
most often used for food analysis, and structural are not very applicable to foods, and so
aren’t used. A review of classical texture exaction algorithms can be found in [124].

Many food types have nonhomogeneous colors - i.e., alternating patches or large areas of
different colors [15, 16], so analysis must be developed to account for this. The authors
of [15] suggests several methods for measuring the amount of color nonhomogeneity in a
region, and [16] tested them and compared the results with human perception. In 2009 [93]
developed a simple algorithm to segment bicolor foods, which was a start, but the problem
was still very much open.

Onward to Complete Systems

The early research on the subproblems involved, and simple industrial systems, slowly but
steadily improved the state of the art in complete food analysis systems. In 2010, [133] devel-
oped a method for grading baked biscuits. It uses a watershed(gradient based) segmentation
scheme and Support Vector Machines (SVM) for classification; both state of the art at the
time. The authors suggested and experimented with several different architectures for the
SVM, their One-Versus-All (OVA) uses the same basic idea as our One Versus The Rest
(OVTR) architecture, but it wasn’t particularly well suited to their problem, and wasn’t
fully developed/implemented well, and gave poor results. The authors of [56] developed a
system to grade oil palm fruit, using domain specific knowledge to segment, and ANN to
classify. They saw a 1.66% classification rate improvement from dimensionality reduction by
Principal Component Analysis (PCA). Although the state of the art is to the point where
complete systems are functional in the field, the area of food quality evaluation is still active
and seeing innovations [79,153,193,196]. But recently meal analysis has split off and become
a separate category, similar in many ways, but often requiring a different approach.

2.1.2 Meal Analysis

All the agricultural classification systems discussed above were limited to extremely narrow
domains, and used specific knowledge of those domains to aid in segmentation and classifica-
tion. Until around 2009, there was little or no existing work on food recognition and volume

Robert J. DiBiano Chapter 2. Related Work 11

estimation applied to meal analysis; for the most part the technology(size, price, resolution,
processing power) had not progressed far enough before this. As technology advanced, people
proposed new applications, and studies were done on their feasibility. In [165], the authors
reviewed several aspects of complete meal recognition systems.

Feasibility Testing

Studies on the viability using digital photography for manual data collection had been in
progress for some time. In 2003, [190] studied the validity of using digital photography to
manually estimate food volume, by comparing in-person estimates against estimates from
digital photography. They found that human analysts have error rates on digital images
of anywhere from 1% to 14% depending on the food type; and that using digital images
only reduces the accuracy by a few percent from in-person estimation. More complex follow
up studies in 2004 [188], 2009 [120], and 2012 [119] gave comparable results and continued
to support the idea that accurate volume estimation from 2d images was viable for human
analysts, both in cafeteria type setting and in “free living” real-world conditions. A similar
study was described in [45], finding that the average of 2 human analysts gave between 9%
and 16% estimation error. The authors of [168] also evaluated digital photography as a tool
for food intake estimation, without regard to automation, and determined that it is a low
cost solution, and provides enough information for a trained human to solve the problem in a
repeatable(therefore potentially accurate) way. In 2011, [17] studied portion size estimation
in children, finding a 60.3% error rate. The authors of [155] did a similar study among
adolescents with errors over 10%, suggesting that error rates below that range on images are
either difficult for humans to reach, or that they require trained analysts to achieve. Overall,
research clearly shows that digital images carry enough information to estimate volume in a
way on-par with direct observation, and that in either case, humans often have estimation
error rates over 10%, depending on food type.

Early results in viability studies naturally led to the idea of using automated systems for
assistance as these systems became available. In 2008, [208] proposed the idea of a mo-
bile phone based system for food intake estimation such as the one presented in chapter 4.
They suggested it be comprised of calibration, segmentation, feature extraction, classifica-
tion, and volume estimation steps, and comparing before and after meal photos to estimate
nutritional intake. In 2009, [27] did a study of the technical viability, challenges involved,
and social impact of using mobile devices to measure food intake and laid out a plan for an
implementation of [208].

With a proposed problem and rough solution in place, more complex studies were done on
manual, semiautomated, and automated food analysis. In [9] the authors did a study on the
viability of automatic collection of daily meal images from cell phones worn hung around
the necks of participants. Ten second intervals were found to be sufficient to fully capture
food from regular meals, such that a human could identify the type and amount. In [47] the

Robert J. DiBiano Chapter 2. Related Work 12

authors studied the viability of actually requiring adolescents and adults to take before and
after images at each meal and concluded it was viable. The authors of [159] also studied the
feasibility of teaching ordinary people how to use meal capture software and getting them
to use it. The authors of [166, 173] reviewed the details of state of the art in manual food
intake estimation to encourage/empower researches to try to solve the automation problem.

From Feasibility to Proposed Solutions

Feasibility studies with good results and the earliest proposal of [27,208] led to more detailed
and discrete ideas for how to approach the problem. Machine learning requires a represen-
tative training set, and often a very large one. In [186] the authors described a project to
create a large database of free-living type foods using digital photography from cell phones.

Of course since the pictures were being taken by cell phone the idea of an app - either on
board or communicating with some remote processing server was obvious. In [98] the authors
outlined a mobile food recording app to test if applications running on mobile devices have
the potential to assess diet.

Normalizing Lighting

In laboratory conditions lighting is standardized, whereas in free living conditions the light
spectra are completely unknown, with cafeterias somewhere in between. RGB values do
not characterize color well if there can be different lightings [63]. Using ANN trained with
each lighting type and a full gamut of colors to convert from RGB to a normalized LAB
was proposed to address this problem. However, finding a training sample of every possible
lighting doesn’t seem very feasible in practice. With a just a baseline black and white level,
contrast normalization and a rough color normalization can be done. These black and white
levels can be drawn from a reference object in the image, or black/white reference pixels can
be found by algorithm and used to normalize. Multiple calibration colors can give a better
estimate. Normalizing color makes the task of classification in different lightings much easier.

Normalizing Scale/Orientation

The main early approach to finding orientation/scale involved using a reference card or
patterned tablecloth [118]. The card could be the Bullseye patterned black and white card of
[121], which can be detected robustly and give black/white levels to simultaneously normalize
color. Or it can be a multicolored card like [145, 205, 207], which is hard to automatically
detect (none of them did) but should give a better color calibration.

In 2012, [4] suggested using the patient’s thumb for reference instead of a calibration card.
The authors of [80] pointed out that plates are both common in food scenes and circular,

Robert J. DiBiano Chapter 2. Related Work 13

and the ellipses can easily be detected and used for scale/orientation detection, assuming
one knows the exact size of the plate. This actually applies fairly well in cafeteria settings,
where many food studies are done.

Segmentation

In actuality, segmentation is inextricably linked with classification; if a single food has areas
with different colors/textures (which many do [16]), then segmentation by classification must
be used. Unfortunately, it’s also much easier to classify given an entire region rather than
only a small patch of pixels. This creates a chicken and egg problem; classification and
segmentation can only be solved optimally by solving the other first. This means either
coming up with a sub-optimal solution for one of the 2 problems, creating an iterative
approach that converges to optimal, or using domain specific knowledge/human assistance.
The majority of researchers assume segmentation or use a simple sub-optimal segmentation.
This is probably because segmentation by classification is difficult and impractical with a
large number of food types. However some headway has been made on the iterative approach
as well.

Since the problem is hard to approach, many researchers simply assume segmentation, or
segment manually. Some use threshold based, region growing, or contour based methods;
most assume one food type. The authors of [125] used the more modern J measure based
SEGmentation (JSEG), allowing them to estimate the number of foods. Our system, [51],
and [95] use a graph cuts implementation, GrabCut, that creates a very good segmentation
from a few initial guessed seed points. It doesn’t inherently estimate the number of food
classes, but can often create a full segmentation from simple thresholding (as in our research)
or a single manual mouse click per region.

Some systems use domain specific knowledge like [207]. Plates can be detected in an image
by a simple ellipse finding algorithm. Plate detection [80] can be a great aid to segmentation,
and a number of systems, including ours, use it [51,125,205,207]. In a cafeteria setting, tray
detection might be more appropriate.

A few authors are more ambitious and try the iterative approach. In [206], the authors used
feedback from the classification step to iteratively re-segment in an attempt to solve the
chicken/egg problem of food segmentation vs classification. We did experiment with several
segmentation by classification and iterative schemes, involving region merge after pixel-wise
classifications; but found that the problem became less feasible the higher the number of
food classes. In 2013, [8] proposed a method of segmenting multiple food items using mean
shift followed by region growing/merge, which gave good segmentation results (88.5%) on
test images. To approach the chicken/egg problem, it used 6 very general food classes for
a region merge after the classification. This makes use the observation that most meals are
likely to be a “balanced” mix of different types to simplify the problem.

Robert J. DiBiano Chapter 2. Related Work 14

Volume Estimation

Once a food is located and identified, the volume needs to be estimated in order to cross
reference with a nutritional database and produce useful nutrient intake estimates.

The simplest models are 2d models. The apparent 2d area of food in a plate or in a clear
cup seems (oddly) to be nearly linear function of mass; which varies depending on the size
of the segments a food is cut into [180]. We also noted this linearity, and used it in our
system; The error rate averages to 15%, varying between 5% and around 25% depending on
food type. This is a bit worse than but comparable to human perception (around 10% also
with high variance).

Some systems try to estimate 3d shapes from a single 2d image. The authors of [192]
presented a method to approximate the area of spherical foods based on a single photo and
a calibration card; they approximate prism shaped foods as well, but with manual assistance
required. The majority of foods are not perfectly spherical or prism shaped, and for those
that are manually fitting a curve to each food largely defeats the purpose of automatic
estimation. So generally, single image 3d estimation seems to be hard to implement and
more trouble than it’s worth.

More sophisticated volume estimation methods use multiple images for 3d modeling; with
results similar to or slightly better than human perception. An extensive study on 3d
modeling methods is published in [108]. Most such methods use 3d scans, and/or keypoint
matching between different viewpoints. In [35] the authors implemented single image volume
estimation on cups and prism shaped foods using keypoint detection and active contours.
The authors of [145] reported a system with 5% error. In 2013, [50] introduced a 2-image
3d volume estimation system with an error of around 10%. So 3d volume estimation is
more accurate than 2d estimation, and may be more accurate than human perception. The
downside of course is that the user has to take multiple images, although a well designed app
could make this relatively painless. Additionally, these 3d methods still require a reference
object to determine scale.

Food Classification Systems

The classifier is the main component of a food recognition system, and draws the most
researchers. While there are only a few published, complete systems there are any number of
classification schemes and partial systems involving one or more of modules discussed above
in addition to the classifier. We feel it provides better insight to consider these modules
together, as part of a system.

The first meal classification systems were generalized rather than food-specific. In 2007 [130]
presented a machine vision system for sensory evaluation of meals, presumably to aid in
automated arrangement and perceptual analysis of TV dinners. It did not use sophisticated

Robert J. DiBiano Chapter 2. Related Work 15

segmentation or classification, but managed to perceive layout/arrangement features of the
meals very similarly to a human panel. In 2008, [101] developed a web app that would
classify a scene as food or not food in an arbitrary image, and estimate the “food balance”,
a rough measure of which food groups were present.

In 2009, [121] provided what is probably the first implementation of the system described
in [208]. They use a small reference card with bullseye patterns on it to calibrate for range
and viewpoint(fully automatic), and segment manually. They classify pixel-wise based on
color, and follow up with morphological region growing to form contiguous regions.

The same year, [83] provided a more sophisticated classification method for the meal recog-
nition problem without delving into segmentation or volume estimation. It uses a modified
form of SVM, called Multiple Kernel Learning (MKL) for classification with color, histogram,
Gabor, and Bag of Features (BOF)(of SIFT) features. They used a “one vs. rest” method to
handle the large number of classes; but it is unclear how they got from individual classifier
outputs to a sorted list of probable food types. They had an 80.05% rate of correct classi-
fications within the top 3 candidates (i.e., the 96th percentile) of foods sampled. As noted
in chapter 4, our system gave a 92% rate of ranking within the top 3 (i.e., 98th percentile;
more food types), and 95% within the 96th percentile.

In [118] the authors described an in development system for meal analysis using threshold
based segmentation plus SVM with color and Gabor features. It used a patterned tablecloth
for range/angle calibration. However it was not complete, and it only recognized 11 food
types, with classifier architecture not suitable to scale to large numbers of types.

The authors of [145] presented a meal assessment system with several novel features. They
attempt to segment by classification (a.k.a. top down segmentation); which could theoreti-
cally provide viable results in the fairly common cases where fully automated segmentation
before classification is fundamentally impossible. But there are many practical difficulties,
particularly for large numbers of classes. They use an interesting classification scheme in-
volving a large set of pairwise classifiers, which minimizes retaining as food types are added
/ removed. But in order to be viable for large numbers of classes, it requires an already
small “candidate set” to start with that must be manually entered via speech recognition
software. They calibrate color/scale with a multicolor checkerboard patterned card; but it is
not located automatically, the user presumably must click each of the corners in each image.
It merges multiple images to generate a 3d model for volume estimation with an error of
only about 5%. They later patented the system [144].

In 2010 [198] explored using the spatial relationships between different parts of a multipart
food to identify it. The method was tested on only a few food classes and was not generaliz-
able to many food types; but showed interesting and promising results for classifying things
like fast food sandwiches and salads. The authors of [205, 207] propose a complete system
for food intake estimation. They use a colored checkerboard card for scale/color calibra-
tion (located manually), and segment using assumptions about the color of the table, plate,
and food. For the actual segmentation they tried multiple things: connected components,

Robert J. DiBiano Chapter 2. Related Work 16

active contours, and normalized cuts. They used color and Gabor features with SVM for
the classification. They classified using 19 food classes; their method doesn’t scale to large
numbers of food classes [111], or provide a sorted list of runners up. Their volume estimation
model uses the prismatic model from [192], but it requires manual input to work. In [25]
the authors found that fractal features work well for food texture analysis; outperforming
classical texture and Gabor, and introduced a new fractal texture feature that showed good
results in this domain.

In [123] the authors developed an app for supermarket food and produce recognition from
image sequences using Speeded Up Robust Features (SURF) for shape matching and color
histograms for color matching, with bag of features to form feature vectors. SVM was
used for the classification, it was tested with 30 food classes and achieved 70% recognition
rate within top 3 candidates (10 percentile). The authors of [125] used a combination of
deformable part models, bag of features, SVM, plate (circle) detection, JSEG segmentation,
SIFT descriptors, and Histogram of Oriented Gradients (HOG). It is significant because
it addresses the problem of automatically segmenting more than one food type, which few
previous papers had done. A novel automated system using the signal from an electronic
ear to detect eating and classify foods was proposed by [139]. It achieved 83% detection and
79% classification accuracy for 8 food types, but proposed no method of estimating intake.

In 2013, we published a complete system [51] for food intake estimation based on [121]. It
used plate (ellipse) detection and GrabCut for segmentation, and a One Versus The Rest
(OVTR) strategy with ANN for classification. It calculates color, 1st order statistical, and
CCM features over multiple patches and uses a voting process to get a ranked list. It was
tested on 110 food types, and its run time is linear with number of classes. Our system
gave a 92% rate of ranking within the top 3 (i.e., 98th percentile). The volume estimation
is done with an autodetected reference card to calibrate scale/orientation, and fitting a
linear area vs. volume model to each food type. In [60] the authors analyzed pasta with
several different texture extraction features, including GLCM, Angle Measurement Technique
(AMT), and Haralick statistics. They conclude that 1st order statistics and GLCM hold up
well against newer methods. In [95] the authors extended previous work in [83] to develop
a food recognition system which achieved a recognition accuracy of 81.55% within top 5
candidates (92nd percentile) over 50 food classes. It segments with GrabCut. It uses color
features plus bag of SURF to keep processing time down, and uses multiple linear SVMs to
get a ranked list, presumably in an OVTR type approach.

In [87] (published in 2014) the authors used Convolutional Neural Network (CNN), which
generates its own features internally for food recognition, with good results. They also
included a successful food image recognition module using handcrafted features and SVM.
In [96] the authors further extended their work in [95] to include 100 food types, and achieve
a recognition rate of 92% within the top 5 (96th percentile). Their revised system made use
of CNN.

Robert J. DiBiano Chapter 2. Related Work 17

2.1.3 Discussion

In summary, there are a number of challenges in creating a food intake estimator, but
there are 3 primary problems that are unique to the problem - food volume estimation,
food segmentation, and food classification. As our system and others [180] have shown,
volume estimation is surprisingly accurate even by simple means, and more complex means
can match a trained human; so it warrants the least attention. Food segmentation is the
most difficult problem and has not really been solved satisfactorily, but the segmentation
by simplified classification approach of [8] seems promising. It would be even better if
there was a formalized way to algorithmically find N optimal simplified food classes for the
segmentation. There are few approaches in food classification to the problem of very large
number of classes with multiple memberships and meaningful runners up. The one we came
up with is One Versus The Rest (OVTR), which seems to be borne out by our results and
the results of others. An alternative might be a purely generative model, but in the presence
of enough training data the performance probably wouldn’t be as high [82].

Integrating user input for verifications and corrections is another significant part of the
problem that few have addressed due to most systems being partial. Our system was designed
with this in mind, allowing for simple manual alterations at any point in the process.

2.2 Car and Human Tracking

Object tracking is not an AI hard problem, but it is a difficult one. The method and
even precise definition of ’object’ and ’tracking’ varies for different applications. There
are numerous viable approaches each with strengths and weaknesses. A survey of various
tracking methods, with a particular focus on human tracking is covered in [199].

RADAR was the first form of electronic tracking system, developed before and during World
War II. Digital cameras were invented in the 70’s, and by the late 80’s handheld digital
cameras were publicly available, making computerized tracking possible. The most naive
approach would be direct template matching by mean difference in pixel value; but there
are two big problems with this. First, it is computationally expensive to compare an object
at every possible xy offset against a significant section of the image. Second, if the lighting
or object orientation changes even slightly, then the template won’t match very well. The
problem of tracking is a difficult one, and has be approached in many different ways. Each
approach has inherent advantages and weaknesses.

2.2.1 Optical Flow

Optical flow is a movement metric measuring apparent local motions in small neighborhoods,
and is based on the way humans and animals perceive motion. In 1981, Horn and Schunck [75]

Robert J. DiBiano Chapter 2. Related Work 18

developed a method for globally estimating optical flow from pairs of digital images. The
same year Lucas and Kanade [114] developed a local estimation method for doing the same.
It creates a vector at every point proportional to how much it appeared to move between the
before and after image. Optical flow had obvious and great utility for object tracking, and is
still used today for some applications. In an overview of optical flow techniques in 1992, [18]
noted that global methods are not suitable for precision applications, and that Lucas-Kanade
flow was still on par with the most accurate methods. Even the most cutting edge methods
up to the present day often integrate flow as a major component [12,88,134,152,171].

Optical flow has the advantage of being closely related to the human perception of motion,
and being able to follow a specific point around indefinitely. It has the disadvantages of
being slow, vulnerable to points appearing and disappearing in the scene, prone to drifting
off target, and easily disrupted by “optical illusions” when an object moves over a patterned
background.

2.2.2 The Drift Problem

Visual tracking usually includes an object model, estimated motion/position, and model
updates. In the case of flow, the bounding box at the beginning of each frame can be
interpreted as the model, the motion of the box due to flow as the estimated motion, and
the new box as the updated model. For a method like direct pattern matching the model
is the template being matched, the place where the template is matched is the estimated
position, and a new template copied from that place is the new model.

The problem is that the new position is always an estimate - image noise, approximation
errors, and algorithmic imperfections all cause small amounts of inaccuracy. If a new model
is generated as a bounding box for example, it will no longer center exactly on the target
object. Over time the model can come to represent more of the background and less of the
object; eventually losing the correct object entirely [26,194].

If we refuse to update the model to avoid this, we’ll lose track of the object as soon as it
no longer matches the model. In the case of flow this would happen immediately when we
didn’t move the bounding box. In the case of template matching it would happen once
lighting/scale/orientation appearance changed slightly and the object no longer registered
as a match [126].

So in most trackers, the bounding box can drift off of the target over time - or fall off more
suddenly if the object model isn’t updated well enough. Some kind of trade off between
stability and flexibility is present in every object tracker. This is known as the “drift problem”
or the “model update problem”, and is one of the fundamental problems of tracking [184].

Robert J. DiBiano Chapter 2. Related Work 19

2.2.3 Early Tracking, the Kalman Filter

Early alternatives to flow were correlation and/or feature tracking. Cross correlation is
essentially a form of template matching, while feature tracking involves extracting some
features from the image and matching them instead of the image itself. Of course, the quality
of this approach depends on the quality of the features chosen. Shi and Thomasi [157] came
up with a mathematically sound method to identify/quantify good features to track. They
also proposed a way to quantify feature drift to determine when to stop tracking a feature.

In the late 80’s, Kalman filtering and extended Kalman filtering [19, 92] started to be used
in machine vision, and by the early 90’s, for tracking. The Kalman filter is an algorithm
to estimate variables by combining multiple noisy measurements. It assumes a linear signal
plus Gaussian noise. In [174] the authors demonstrated their use for tracking large numbers
of objects simultaneously on radar-like streams; the same principal is applicable to general
tracking. The more general extended Kalman filter was difficult to implement in practice,
often producing unstable results due to incorrect assumptions it makes about local linearity
in order to handle nonlinear systems [84]. Authors such as [84, 181] (who proposed the
“unscented Kalman filter”, which modeled nonlinear systems much more accurately) made
various improvements. The authors of [10] note that the unscented Kalman filter (which was
state of the art at the time) still didn’t perform well for bimodal hypotheses, and suggested
the up and coming particle filters as an improved method. So while the Kalman filter was an
elegant and powerful algorithm, the consensus was that it was not particularly well suited
to visual tracking [61].

2.2.4 Tracking vs. Detection and Tracking by Detection

Object tracking implies following a moving object, using the previous physical location(s) of
the object to simplify finding it again. Object detection implies an exhaustive search of a
large area for one or more instances of a known, recognizable object. In practice, detection
is often a subtask during tracking: to know to start tracking when an object has been found,
to stop when an object has been lost, to help with the actual tracking, etc.

In the latter case; tracking by detection is a viable tracking method [68]; with built in re-
silience against large movements and full occlusion. So to a large extent object detection can
be considered a subclass of object tracking. For example, template matching is a detection
method, not a tracking method, but it is used for tracking. Since it uses more processing
power to do an exhaustive search; this approach has become more feasible and more common
in recent years [5, 194].

Robert J. DiBiano Chapter 2. Related Work 20

2.2.5 Enhanced Template Matching

Template matching is a too simplistic an approach as it is sensitive to lighting differences,
scaling, rotation, and background included in the template. It is also prone to drift, and
prohibitively slow to search large regions. But if some or all these weaknesses are handled,
it can still be useful. Many machine learning based methods (discussed later), being detec-
tion based, are essentially very advanced template matching, and can suffer from the same
problems, and more importantly, benefit from the same advances.

One approach to template matching is to use some transformation to move the problem to
a domain with fewer dimensions, or one where the matching problem is easier. One such
was an eigenspace based approach that used a “multiple-views plus transformation” model
of object recognition [23]. In this method, a large number of training samples are approxi-
mated by linear combination of a small number of basis images; and testing images can be
approximated from the same basis set to determine their similarity. This “Eigentracking”
operates by object recognition rather than looking for motion in the image like flow based
techniques.

As with all trackers, researchers tried to take advantage of the strengths of the method while
coming up with additions to compensate for the weaknesses. The authors of [69] proposed a
framework for tracking large image regions based on pattern matching and minimizing the
Sum-of-Squared Differences (SSD) between regions. It is significant because it compensates
for lighting changes and transformations between frames, as well as detecting and compen-
sating for occlusion. One solution to the problem of template drift in template-matching
type tracking approaches was proposed by [126]. They suggested keeping a short and long
term template in memory, loosely modeled after the human memory. This principle was
later used to great effect in advanced trackers like the well known TLD tracker [91].

In 2005, [46] revolutionized template matching with a simple method that is indifferent to
lighting differences and small positional/scaling differences, and much faster than template
matching. Their Histogram of Oriented Gradients (HOG) features rely on finding the general
edge directions in a block of space by taking their histogram. Since the edge directions are
de-localized over a block, exact position within a block doesn’t matter, and the template
need not be matched pixel by pixel. Most importantly, HOG features were also well suited
to the newly popular machine learning based approaches.

Template matching has the advantage of being tracking by detection, namely it can be used
to recover from track loss and occlusion easily. The disadvantages are in speed, and the
fact that it is prone to track loss and template drift depending on how often the models are
updated. Template matching is also unsuited for fluid or articulated objects.

Robert J. DiBiano Chapter 2. Related Work 21

2.2.6 Enhanced Optical Flow

As noted earlier, optical flow is still used for many applications today, and is also a valuable
subpart of many modern trackers. In 2000, [26] proposed a pyramidal implementation of
the Lucas Kanade flow algorithm to extend it to track efficiently with large inter-frame
motions. It’s worth nothing that the concept of coarse to fine pyramidal processing has
wider application in speeding up similar algorithms.

A novel tracking using optical flow to guide keypoint tracking was proposed by [152]. It is
far more robust than flow however. With spatial dependence between keypoints it handles
occlusions and new objects well, and like flow can be used to track an arbitrary point for a
long period of time.

2.2.7 Enhanced Difference Images

Another naive approach to tracking on par with template matching is “image subtraction”,
where 2 images taken consecutively of the same scene are subtracted. Ignoring noise, the
differences should be zero at every point in the image if nothing changed. So if an ob-
ject moved, the differences will be nonzero at the place the object vacated, which is now
background, and the space the object moved to, which is no longer background. The most
obvious problem with this approach is that you can’t tell which of the 2 clusters corresponds
to the object without some sort of hypothesis about its heading. Swaying trees and whatnot
in the background can also be a problem.

The idea of background subtraction extends simple image subtraction by explicitly modeling
the background in order to distinguish when it has been covered by a moving object, and
when it has been revealed. In 1999, [163] extended the idea of simple background subtraction
by modeling each pixel as a mixture of Gaussians to segment out moving objects. Their
method works in the presence of clutter, lighting changes, and repetitive background motions
like swaying leaves. Later, [85] improved on their moving foreground segmentation to learn
faster and ignore shadows, which the previous system had considered as objects.

Recently, another approach to the problem of separating moving objects from a background
has been proposed. In [33] the authors showed how an extension of PCA called principal
component pursuit can be used to separate foreground events from a video stream with a
stationary background. Later, [204] extended their method to moving background.

For track starting, the state of the art is either object detection, which requires a represen-
tative object model, or background subtraction [161,204].

Tracking based on image difference has the advantage of being applicable to automatic track
starting and being able to handle blurry, fluid, and nonrigid objects seamlessly. It is also
not prone to drift as such, since the model is reliably updated by image differences. Its
weaknesses are that it requires either a stationary or simple background, and that it doesn’t

Robert J. DiBiano Chapter 2. Related Work 22

explicitly handle stationary or slow moving objects.

2.2.8 Layer Representations

Dynamic Layer Representations are a segmentation method that uses optical flow, but pro-
duces segments like background modeling methods discussed above in “Enhanced Difference
Images”. The Idea is to group pixels into clusters with similar motion properties, thus seg-
menting out objects moving relative to their surroundings. This is convenient because the
clusters can also be tracked by their motion properties.

In 1993, [182] proposed the idea of using the discontinuities at object boundaries in a flow
field to detect those boundaries. They refined their system in [183], and showed how it can
be applied for motion segmentation, determining relative depth, and video compression.

Later, [170, 171] extended the idea into a more complete solution suitable for practical ap-
plication. It merges motion, appearance, and shape models of detected layers to continue to
track them. It attempts to detect and handle various object states such as occlusion, track
loss, and target becoming stationary by a decision tree that transitions through various track
states.

Tracking based on layer representations has many of the advantages and disadvantages of
image difference, since the results look similar. Layer representations have trouble with
non rigid objects though, since different parts don’t have clear layer membership. However,
moving backgrounds are far less of a problem, and are handled seamlessly.

2.2.9 Advanced Filtering

Kalman filtering did not work especially well for vision based tracking. Any methods that
fuse noisy past data that give incomplete information about position individually in order
to hypothesize current position are called “filters” in this context. This is because they
essentially filter out the noise and find more reliable location information.

In 2000, [40] proposed the “mean-shift” algorithm that assigns a probability to each pixel
to be part of the target object, then follows the center of mass of the cluster from frame
to frame. It suggests basing the probability on similarity of color to colors near the center
of the previous object windows. It also includes a scheme to compensate for changes in
scale. This algorithm is well suited to non rigid objects because it doesn’t rely on pattern
matching. Mean-shift is very simple, yet produces good results, and is applicable to many
different types of problems. Later, [41] proposed combining a histogram based appearance
model with a shape based kernel to improve on their purely color based model, allowing
tracking of more closely spaced and identically dressed humans.

The authors of [78] proposed a probabilistic algorithm based on factored sampling to estimate

Robert J. DiBiano Chapter 2. Related Work 23

motion in clutter in 1998. Their “condensation” algorithm would later be known as particle
filtering. This algorithm was so interesting because it could handle multimodal hypotheses ;
in the context of tracking that means if measurements indicate several probable headings
that diverge in different directions, the filter will handle all of them at once and continue
to support/undermine them for some time as more data comes in, rather than immediately
forgetting all but the most probable heading. This allows the tracker to recover from tem-
porary confusion or shortages of information. Improvements were made on the standard
particle filter for tracking with Kernel Particle Filters (KPF) [36]. It uses kernels to weight
the particle likelihood, and utilizes the mean shift procedure. The work of [115] sped up
standard particle filtering based trackers by finding a fast approximation with mean-shift.
Later [128] used particle filters to fuse shape and appearance cues.

Filtering has the advantage of being very flexible; depending on what data you use it to
“filter”, similarly its disadvantages depend on the usage. One universal disadvantage is that
it is not tracking by detection, and provides no inherent way to recover from track loss.

2.2.10 Machine Learning Based Tracking

After 2000, approaches using machine learning have been increasingly popular, both for
tracking by detection (classification), and elsewhere in the algorithms. Tracking by detection
and detection by tracking both have inherent problems; so as tracking by detection came
into use, researches needed to combine it with detection by tracking. Particle filtering had
shown impressive promise, but had many problems that needed to be worked out; and the
mean-shift procedure remained popular in many different types of tracking.

Early attempts at tracking by learning based detection suffered from most of the same
problems as template matching, since machine learning is, at its core, a similar idea. With
enough training data and a homogeneous enough class of objects, it was possible. In one
such application, [12] used the pyramidal flow of [26], to integrate learning based object
classification with flow based tracking to track (the backs of) cars.

In 2005, the HOG features of [46] (discussed in enhanced template matching above) produced
better results than any contemporary method for human detection in images. The resulting
blocks and histograms their algorithm produces capture the general shape of an object and
without requiring precise registration, and make excellent features for machine learning.

Boosting Based Detection

The boosting algorithm [156] is a general method for combining many weak classifiers into
a stronger one. In 2001, [177] proposed a machine learning based object detection algorithm
that can be used for tracking. It uses boosting to combine weak rectangle features into
a stronger classifier, and cascades faster classifiers to reject easily ruled out regions with

Robert J. DiBiano Chapter 2. Related Work 24

successively slower but more powerful classifiers to choose between likely candidates.

In [136] the authors used boosting based object detection for automatic track starting, and
extended the particle filtering of [78] with boosting based detection to track hockey players.
In [13] the authors combined boosting based detection with mean-shift tracking to track
humans and cars. The background colors/textures are used to infer object colors/textures,
and train the classifier online.

Online Learning

Rather than try to match the target object against any kind of template, an alternative
is to build foreground and background models of some kind (discussed in the sections on
Enhanced Difference Images and Layer representations), and use them to train a learner.
Within a few frames it can produce very good segmentations with very little processing
power required to get them. Such a classifier cannot be trained ahead of time; since they
differentiate a specific object from a specific background, so some initial segmentation must
be provided by some other method.

A classifier that is fully trained ahead of time is called offline, and generally is a template
for a general object class. A classifier that is continually trained during runtime is called
online, and generally discriminates a specific object from its current background. Offline
classifiers are able to start tracks, and don’t exhibit model drift, but cannot handle non rigid
or multiple objects well. Online classifiers are more accurate and flexible, but cannot start
tracks and experience model drift.

The authors of [64, 65] proposed a method using boosting for feature selection in tracking.
They do foreground/background segmentation through classification, using a mean shift
like approach to do online, fully classification based tracking. The author of [135] also did
classification based foreground/background detection.

To improve online tracking and mitigate its weaknesses, a number of improvements have been
suggested. In [14] the author showed a way to use multiple instance learning to handle model
drift in purely online based detection. The author of [151] proposed the use of random forests
(an amalgamation learner similar to boosting) for online learning based tracking. Due to their
extremely high speed and parallelizability, they are well suited for real-time applications.
Kalal and Matas proposed a way of labeling unlabeled data online using structural constraints
in [89], and a method of detecting tracking failure by tracking both forwards and backwards
in time in [90]. In [201] the author integrated semi-supervised and multiple instance learning
into one tracker.

Robert J. DiBiano Chapter 2. Related Work 25

Multi Object Tracking

One problem with tracking by learning is that it does not handle multiple objects particularly
well. Online learning differentiates objects from background rather than each other, nor
do offline methods distinguish between objects. Common approaches to handling this are
coupling detection with traditional tracking, or concentrating on differentiating between
objects in a dedicated module.

In [105, 106] the authors address the problem of tracking multiple humans simultaneously
in crowded scenes. They combine feature and silhouette based cues over multiple frames
to handle large amounts of occlusion, coupling detection and trajectory estimation into
an optimization problem. To get partial silhouettes in this situation, they use top down
segmentation.

The authors of [135] improved on their work in [162] to better handle various problems.
They note simple online training suffers from the drift problem; indeed all online tracking
methods have a trade of between drift and adaptability. They also note that learning based
tracking is sensitive to occlusions, and multiple similar objects. Their upgraded method
uses separate classifiers for detection, tracking, and differentiating between similar objects,
which simplifies the problem and accounts for drift, occlusion, and multi-object tracking.
In [66] they demonstrate tracking fully occluded or out of frame objects by analyzing their
statistical relation with the motion of visible points.

Integrating Offline Detection with Online Learning

Online and offline learning each complement some of the other’s weaknesses, so methods
like [135] that integrate both are common.

In [67] the authors handled the problem of integrating recognition and tracking elegantly
by training a classifier offline, then introducing nearby background patches as additional
training samples once the track had been started, and training online with the combined
dataset. The authors of [107] describe the semi-supervised boosting they used in more
detail. In [200] the authors described a similar approach, co-training generative (offline) and
discriminative (online) models.

In [57], the authors used CNN for human tracking, taking into consideration the drift and
multi-object problems.

Integrating Tracking by Detection and Detection by Tracking

Another way of handling the weaknesses of learning based tracking is to couple it with
traditional tracking methods. A number of trackers have given good results coupling with
simple optical flow.

Robert J. DiBiano Chapter 2. Related Work 26

The work of [109] focuses on the problem of tracking in low frame rate video. They hypoth-
esize that tracking by detection is the best approach in such scenarios due to low motion
continuity, but note that there is discontinuity in detection features as well. They model the
tracker as a group of observers with different lifespans; short lifespans being more classifier-
like, long lifespans more tracker-like. The idea is based on and utilizes particle filtering.

In [88] the authors integrate tracking by detection with optical flow, and have a strategy to
minimize drift while still allowing for large changes in object appearance over time.

in 2012, [91] extended their work of [88,89] with the well known Tracking Learning Detection
(TLD) algorithm, which breaks the problem of tracking into simpler sub-tasks in a manner
similar to [162]. It is a learning based method that smoothly optimizes between tracking by
detection and detection by tracking, and is commercially available under the name “Preda-
tor” tracker. It cannot handle multiple objects, but is very flexible and applicable to choppy
and occlusion-heavy video due to fully online training, low drift, and a strong detection
component to recover from errors.

In 2013, [134] came up with an algorithm that used optical flow to improve machine learning
on keypoints in a manner based on the TLD of [91].

Learning Based Tracking - Advantages and Disadvantages

Machine learning based tracking has the advantage of being relatively flexible, powerful,
and easy to implement. It is generally some type of tracking by detection, so it has the
advantage of easy track recovery as well. If trained offline, it can be used for track starting
and doesn’t drift, but has the disadvantage of needing a huge, representative dataset, and
losing adaptability. If trained online it has much more adaptability the disadvantage of the
drift problem. Despite the power of the approach, neither method is well suited to lighting
changes, quality changes, occlusions, or multiple objects, so each of these problems must be
accounted for in practical trackers.

2.2.11 Part Based Models

Machine learning is not well suited to articulated objects, or objects that vary in appearance,
or objects for which a large training set isn’t available. One approach to these problems is
considering an object to be a collection of recognizable parts, with their relative positions
only loosely related.

In 2002, [2] proposed an object detection method that represents and object as a collection
of high level parts. It automatically learns these parts from lower level interest points. It is
applicable to objects with similar and similarly arranged parts, and was demonstrated for
car detection (always in profile, from the same angle) with good results. These parts can be

Robert J. DiBiano Chapter 2. Related Work 27

templates of physical parts of the object, or they can be extracted features. In [1], position
and scale of an object are estimated from the histograms of multiple patches.

Part based models have the advantage of being able to generalize from few examples [58],
match to examples they haven’t been explicitly trained with, and are directly applicable to
activity classification. Of course they are only as good as the combination of their feature
choices and the algorithm to match groups of related features; practical implementation can
be complex [81].

2.2.12 Non-Rigid Objects

Learning based tracking tends to have trouble with non-rigid objects, and fail on objects that
undergo rapid appearance changes. Vehicles or animals that turn around suddenly and show
an unknown side, humans that bend into shapes not seen in training, and anything with joints
that changes shape can cause problems. Many methods use patch-based classification to
address this; extracting part-like features that don’t vary rapidly over space from tiled regions
over the object of interest. In 2011, [34] modeled objects as a collection of patches with a
separate layer of global properties/motions shared among them. Local histogram features
were an important part of the patch recognition. The authors of [62] used random forests (a
machine learning algorithm) with generalized Hough transform to track non rigid objects.
They use the GrabCuts algorithm to segment and select better training samples, all but
eliminating drift as long as segmentation was possible. Others have modeled nonrigid objects
as a geometrically related group of patches using simple color features, with competitive
results [102].

2.2.13 Limb Tracking

Limb Tracking, the tracking of individual limbs on tracked humans, is a topic of particular
interest in human tracking, because of the extra information we can infer from grasping
objects, gestures, etc. It can be approached bottom up as a special case of part based
models, or top down as a much more complex type of template matching [142].

In a top down approach, [103] tracked limb positions of humans, compensating for the
problem of self occlusion. That is, the fact that limbs are regularly blocked by the body
or other limbs, making their position difficult to calculate accurately by direct observation.
They model a human as a 2 dimensional collection of rigid parts connected by springs to
constrain their positions in space, and use hidden Markov temporal models to constrain their
positions in time. Silhouette based trackers lend themselves to top down approaches just as
part based lend themselves to bottom up. In this way [5] extended the silhouette based work
of [106] by modeling limb positions, estimating pose over multiple frames using a dynamical
walking model to form tracklets, and combining tracklets to form longer tracks. The authors

Robert J. DiBiano Chapter 2. Related Work 28

of [146] combined top down human detection with bottom up part detection to model and
track limbs on detected humans. In another approach, [59] used deformable part models in
a human recognition system.

2.2.14 Surveillance

Surveillance is best viewed as a large set of different, difficult problems that share some
approaches in common, but need to be approached individually. In 2008, [49] published a
study on the state of automated visual surveillance. They state that there are many “sub
systems and partial solutions which go some way to wards solving elements of” the “problem
of surveillance”. They conclude that the successfully deployed automatic surveillance systems
to date used domain specific knowledge and constraints to reduce the problem complexity.

Thinking along these lines, [104] extended their multi object tracking [105] to use trajectories
from previous humans to provide likelihood information about future ones, for use in a
fixed surveillance application. The authors of [148] used a grid of simple learning based
trackers to handle a fixed surveillance application, and found it to be competitive with more
complex (but non domain specific) state of the art trackers. Building on their classifier grid
for fixed surveillance cameras, they point out that a problem with all classification based
tracking is getting a representative training set. To alleviate this they provide a method of
supplementing the data with unlabeled offline data in [161].

In the case of aerial surveillance, the camera is moving, and the scene is changing, so the
simplification approaches mentioned above will not work. Furthermore the resolution is
usually several orders of magnitude worse than for a non-moving ground-based camera much
closer to the target. To approach this problem,the dynamic layer representation of [170,171]
was applied to tracking distant, low resolution vehicles from the air.

Many surveillance systems don’t take so much a video as a sequence of images, once every
few seconds, to conserve space. In [112] the authors study the problem of analyzing very low
frame rate (a few frames per minute or less) image sequences. Under these conditions, an
individual object is not trackable; but they note that learning based detection, and learning
based on timestamp of periodic events and metadata are possible.

2.2.15 Discussion

The best approaches to surveillance are application specific [49], so in order to design a
surveillance system we need to examine the intended application carefully. The example
scenes we were interested in tracking were drawn from the /acrshortvirat Aerial Dataset
and /acrshortvirat Ground Dataset [178]. The aerial photos are regularly blurry and low
resolution, with camera motion and variance in viewpoint. The ground photos are better
resolution, better quality, and have little camera motion. Both contain humans and cars, the

Robert J. DiBiano Chapter 2. Related Work 29

objects we are interested in tracking. The objective was to design an algorithm suitable for
automated surveillance on both datasets, with an eye towards being connected to an event
detection layer as part of a larger system.

An automated system would need to be able to automatically start tracks, so it would
need to either use offline detection based on prior class examples or some form of enhanced
difference images [161, 204]. Because of the extreme variability in viewpoint, scale, object
shape, and image quality, offline machine learning does not seem like a feasible approach. The
most promising state of the art foreground segmentation approaches are Gaussian mixture
like [85], or layer representations like [183]. Either would be fine for surveillance; the layer
representations might be better for aerial videos because they don’t have to explicitly account
for camera motion. For general car/human tracking, Gaussian mixture models should be
able to produce simple and complete silhouettes which can potentially be used by a top down
body tracking algorithm [5]. Part based models would be a useful feature to enable bottom
up body tracking, but as discussed above, pre-trained classifiers are not viable, and many of
the videos we want to track are poor enough that parts would not be distinguishable.

Since Gaussian mixture models foreground segmentation doesn’t inherently account for mo-
tion, a stabilization algorithm would be necessary; the aerial videos in question have many
more background than foreground pixels, and usually have relatively slow, simple camera
motions. In the cases where the camera moves suddenly, things are usually moving out of
frame and are no longer trackable anyway. Because of this and the fact that optical flow
often proves useful to bolster other tracking methods [12,88,134,152,171], we used pyramidal
flow [26] as the basis for our stabilization.

For the tracking itself, either blobs picked up by the foreground segmentation or optical
flow seem like convenient choices, since the data is already acquired for previous steps.
Unfortunately, optical flow by itself is unreliable and prone to drift, can be disrupted by
near passes or a textured background. Foreground segmentation doesn’t differentiate well
between objects, and cannot track an object that stops moving briefly. So if these methods
are used to track, near passes, similar objects, track loss, and occlusion need to be handled.

Every individual tracking method discussed above has strengths and weaknesses. Most
robust trackers combine multiple strategies - such as tracking plus detection or flexible plus
reliable in order to produce practically useful results [5, 67, 88, 91, 134, 135, 152, 171]. Also,
domain specific knowledge has proven to be useful in surveillance applications [49, 148],
meaning the best solution varies with the specific problem. So clearly some method to
combine multiple trackers is in order.

The agile tracker switches between tracking methods to when a confidence measure associated
with a given tracking measure starts to drop. For example if the object stops moving, it
would switch off of Gaussian mixture foreground segmentation; and if it continues moving
for some time or crosses a textured background it would switch off of flow to avoid drift or
confusion. Gaussian mixture foreground segmentation inherently handles partial occlusions,
and the confidence measures provide a natural way to detect track loss. It uses simple

Robert J. DiBiano Chapter 2. Related Work 30

Gaussian kernels in a manner similar to [41] to handle near passes and similar objects.

Many good nonrigid object trackers such as [34] use tiled patches with color histogram
features to model objects. Other such as [102] use color or texture features targeted freely
around arbitrary points. The block based approach requires the object to be, at minimum,
almost as big as a block; so may not be viable on very distant cars or humans from the air.
Similarly, most feature extraction approaches require some neighborhood of pixels. Scale
invariant features are an exception, but for distant, blurry objects, tracking by detection
based on only scale invariant features might still be a problem; such objects seem unlikely
to have an abundance of good features.

MAPTrack, with this in mind, integrates pixel-wise color model information into the tracking,
and replaces the switching algorithm with a more stable “soft switching” equation, followed
by mean shift [40] filtering in order to track. It also uses a more complex kernel built
from previous observations for the shape model. Considering the recent progress in online
discriminative tracking, a learning based appearance model might be a significant future
improvement, even with small or single pixel features. Keeping in mind that being able to
match by appearance model with an object in another scene would be useful in higher layers
of the system.

Chapter 3

Preliminaries

3.1 Graph cuts segmentation and max-flow min-cut

theorem

Graph cuts is a mathematical technique that has been successfully used to solve a number
of low level computer vision problems, including segmentation. Our food recognition system
uses graph cuts based segmentation, and the same ideas may be applicable to future versions
of the tracker as well. The basic idea is to redefine the segmentation problem as a min-
cut max-flow problem, a graph-based energy minimization problem with a known solution.
However finding an exact solution is often computationally prohibitive. In order to solve the
problem efficiently, an approximate solution can be found via graph cuts. By varying the
details of the energy function being minimized, and how the graph problem is set up, the
segment type, quality and segmentation speed can be varied. Graph cuts segmentation has
been used to segment single images based on only a few pixels of the object to be segmented
as initial information. It has been used in the same way on single frames of video sequences,
using tracker output as the initial guess to prevent model drift. The graph cuts procedure
can be applied more generally to a whole class of optimization problems associated with
balancing well connected image segmentation against other constraints.

This section will explain how graph cuts sets up segmentation as an optimization problem,
how that optimization problem can be solved by using the method of graph cuts. It will
show examples of simplest cases, then discuss more complex details necessary for actual
application, including extending graph cuts from the binary case (2 classes) to multiple
classes, algorithms to efficiently get approximate solutions to the graph cuts problem, what
energy functions to use, and discuss a practical implementation called GrabCuts [149].

31

Robert J. DiBiano Chapter 3. Preliminaries 32

3.1.1 Segmentation as Energy Minimization [28]

First, segmenting an image into foreground / background is treated as a binary classification
problem, with each pixel labeled as foreground (the object of interest) or background. An
energy cost is associated with each labeling, depending on how well the label satisfies some
constraints. The problem can be solved by finding the combination of labels that gives the
smallest total energy cost across the image [28]. A standard form for the energy term is

E(L) = Edata(L) + Esmooth(L) (3.1)

for some labeling L. The goal is to find the labeling L that minimizes the global sum:

E(L) =
∑
p∈P

Edata(Lp) +
∑

{p,q}∈N

Esmooth(Lp, Lq) (3.2)

where p and q are pixels, N is the set of pairs of pixels in the same neighborhood, and P is
the entire image. L is the proposed labeling for the entire image, Lp is the proposed label for
pixel p. Edata is based on the similarity of the current pixel to some model, and Esmooth is
based on the similarity of the proposed label to the labels of nearby pixels (Lq). In practice,
the 2 terms can be weighted differently to give more precedence to one or the other. A good
weight can be determined experimentally.

Edata measures the similarity of a pixel to some model, which is generated from observed
data, as shown in Fig. 3.1. The simplest form of Edata is

Edata(p, Lp) = (ILp − Ip)
2 (3.3)

where ILp is the average intensity of the observed data for that class, and Ip is the intensity
of the current pixel. A more sophisticated measure could be the histogram based probability
introduced in [74]. In this method a normalized histogram of the observed data on the hue
channel is taken, and a candidate pixel is assigned a probability based on the count in the
corresponding bin:

Edata(p, Lp) =

{
1− histα(Hp)

max(histα)
if Lp = α

histα(Hp)

max(histα)
if Lp = β

(3.4)

where Hp is the hue of the current pixel, histα is the initial foreground histogram, α is
the foreground label, and β is the background label. With models of both foreground and
background, probability could be determined by the relative height of the histogram bin in
fg/bg models:

Edata(p, Lp) =

[
histLp(Hp)

max(histLp)
−

histL̃p
(Hp)

max(histL̃p
)
+ 1

]
/2 (3.5)

Since lower energies correspond to a better match, the similarity measure must be manipu-
lated to reflect this. For texture based segmentation, the similarity to a texture model can

Robert J. DiBiano Chapter 3. Preliminaries 33

Figure 3.1: Edata measures similarity of each pixel to some model; more similar costs less
energy to label.

be used instead. The foreground/background models, whether they are average intensities,
histograms, or something else, must be found from some initial guess or previous example.

Esmooth measures if a pixel has a similar label to each of its neighbors, as shown in Fig. 3.2.
The simplest version would be zero if neighbors share the same label, a constant otherwise:

Esmooth(Lp, Lq) =
∑

{p,q}∈N

{
0 if Lp = Lq

1 otherwise
(3.6)

where N is a the set of adjacent (8-connected) pixels. In practice it is recommended to weight
the penalty for not matching a neighbor less if the appearance is very different, giving an
effect similar to the bilateral filter:

Esmooth(Lp) =
∑

{p,q}∈N

{
0 if Lp = Lq

1− |Iq − Ip| otherwise
(3.7)

where Ip and Iq are the intensities of the current and neighboring pixels, normalized to
range from 0 to 1, so that the energy term is non-negative. After some experimentation, [29]
suggested the following to give good results in practice:

Esmooth(Lp) ∝
∑

{p,q}∈N

0 if Lp = Lq

exp

(
− (Iq − Ip)

2

2σ2

)
· 1

dist(p, q)
otherwise

(3.8)

where σ is a penalty threshold representing the intensity level of camera noise, and dist is
the distance in space between a pair of pixels. Hue difference, edge strength, or gradient

Robert J. DiBiano Chapter 3. Preliminaries 34

Figure 3.2: Esmooth measures similarity of each pixel to is neighbors; each differently labeled
neighbor costs energy.

direction can be used in the same way as intensity difference. Alternatively, Edata may
provide an already calculated measure of color/texture to use for comparison.

3.1.2 Energy minimization as Known Graph Problem [28]

The problem with energy minimization in the context of image (or video) processing is the
high computational cost. Even a low resolution image has hundreds of thousands of pixels,
most have millions. The dimensionality of the space we’re looking for the minimum in is
|P | (number of pixels), and the space is full of local minima so a simple gradient descent
or the like will fail [28]. In the past, various methods were attempted to minimize energy
efficiently, with limited success. Notably, simulated annealing was popular for a time, but it
was very slow.

The minimization problem can be reformulated as a graph problem, where each pixel is a
node, connected to its neighbors by edges weighted by a smoothness term Wsmooth. There
are 2 additional nodes, one for each class, and each pixel is connected to both of these by
edges weighted by the a data term Wdata, as shown in Fig. 3.3. Note that these terms are
different than the ones for the non-graph-problem formulation. The data term is minus the
original data term, so the simplest case of Eq. 3.3 becomes:

Wdata(p, α) = −(Iα − Ip)
2 (3.9)

Wdata(p, β) = −(Iβ − Ip)
2 (3.10)

for the weights of the edges attached to the 2 class nodes. The smoothness term is the
original smoothness term, for the case Lp ̸= Lq. In the simplest case this is just a constant,
Eq. 3.6 becomes:

Wsmooth(p, q) = 1 (3.11)

Robert J. DiBiano Chapter 3. Preliminaries 35

Figure 3.3: Node for each class and pixel, higher energy costs convert to lower edge weights.

for every edge connecting adjacent pixels. It is important that the smoothness terms always
be non-negative so, everything else being equal, few cuts are always less costly than many
cuts.

The idea is to separate the graph into 2 unconnected subgraphs, each containing one of the
label nodes. Thus each pixel node is attached to one and only one label node. Doing this
by minimizing the sum of the cut edges is equivalent to the energy minimization problem.

3.1.3 Graph Cuts

Boykov et al. [28] introduced the idea of a graph cut, formally stated: Let G =< V , E > be
a weighted graph with vertices V , edges E , and 2 unique vertices called the terminals. A cut
C ⊂ E is a set of edges such that the terminals are separated in G ′ =< V − C, E >, and no
proper subset of C separates the terminals in G ′.

Fig. 3.4 shows an example of a graph cut. The minimum cut is the cut with the smallest sum
of edge weights. There are numerous min cut algorithms available with low polynomial time,
some of which function in near linear time (with number of pixels) in practice. Notably, the
solving the max flow problem for a network is equivalent to determining the min cut.

3.1.4 Muticlass Graph Cuts and Efficient Approximations

Some segmentation problems simply need to separate foreground from background, and thus
have only 2 possible pixel labellings. However many segmentation tasks involve dividing the
image into multiple segments, either a fixed number, or based on some quality metric. For
these situations it is useful to extend the idea of graph cuts based segmentation to more
than 2 labels.

Robert J. DiBiano Chapter 3. Preliminaries 36

Figure 3.4: Find the minimum cost cut to divide the graph into 2 subgraphs, each containing
one class node.

[28] developed two energy minimization algorithms: swap-move (Algorithm 1) and expansion-
move (Algorithm 2). They are designed to give efficient approximations of the optimal label-
ing for more than 2 classes. They are guaranteed to converge in a finite number of cycles, and
in practice converge very quickly. Furthermore, the expansion-move algorithm is guaranteed
to end within a factor of two of the global minimum. Both these algorithms rely on solving
modified min cut problems as an integral step.

Swap-Move [28]

During a swap-move, pixels from 2 classes either stay the same or change to each others’
labels (Fig. 3.5). Two labels α and β are chosen from the set of all labels L. Pαβ is the
union of all pixels initially having either label. Each pixel p and the terminals for the chosen
classes, Tα and Tβ are vertices on the graph Gαβ. Each pixel vertex is connected by edges to
the vertices of its neighbors, and to the 2 terminals. Unlike in the 2 label examples shown
above, the swap move and expansion move assume the terminal a pixel is severed from is the
labeling it is assigned, so Edata(p, Lp) is used directly for the edge weights. The edge weights
to set up the graph for this problem are shown in table 3.1.

Algorithm 1 swap-move algorithm

1. Start with an arbitrary labeling L
2. Set success to false
3. for each pair of labels {α, β} ⊂ L

3.1. Find L̂ = argmin E(L′) among L′ within one α− β swap of L
3.2. ifE(L̂) < E(L), then Set L := L̂, Set success to true

4. if success is true, then goto 2
5. Return L

Robert J. DiBiano Chapter 3. Preliminaries 37

edge weight for
{p, Tα} Edata(p, α) +

∑
q∈Np

q /∈Pαβ

Esmooth(α,Lq) p ∈ Pαβ

{p, Tβ} Edata(p, β) +
∑

q∈Np

q /∈Pαβ

Esmooth(β, Lq) p ∈ Pαβ

{p, q} Esmooth(α, β)
p,q∈Pαβ

{p,q}∈N

Table 3.1: Swap-move edge weights

Figure 3.5: Swap-move

Expansion-Move [28]

During an expansion move, the pixels from one class expand into a superset of themselves,
relabeling pixels from 1 or more other classes (Fig. 3.6). Two labels α and ᾱ are chosen from
the set of all labels L. Pα is initial α labeled region, and Pᾱ is everything else. Similarly to
swap-move, each pixel p and the terminals for the chosen classes Tα and Tᾱ are vertices on
the graph Gα. Additionally, an auxiliary node a is created for each pair of pixels in the same
neighborhood but with different labels. Edges are created between each pair of pixels with
the same label, but for pixels with different labels, both are connected to the auxiliary node
instead. The auxiliary nodes are also connected to Tᾱ. As with the swap-move, it assumes
the terminal a pixel is severed from is the labeling it is assigned. The edge weights to set up
the graph for this problem are shown in table 3.2.

Algorithm 2 expansion-move algorithm

1. Start with an arbitrary labeling L
2. Set success to false
3. for label α ∈ L

3.1. Find L̂ = argmin E(L′) among L′ within one α− expansion of L
3.2. ifE(L̂) < E(L), then Set L := L̂, Set success to true

4. if success is true, then goto 2
5. Return L

Robert J. DiBiano Chapter 3. Preliminaries 38

edge weight for

{p, Tᾱ} ∞
Edata(p,Lp)

p∈Pα

p/∈Pα

{p, Tα} Edata(p, α) p ∈ P
{p, q} Esmooth(Lp, α) {p, q} ∈ N,Lp = Lq

{p, a} Esmooth(Lp, α) {p, q} ∈ N,Lp ̸= Lq

{a, q} Esmooth(α,Lq) {p, q} ∈ N,Lp ̸= Lq

{a, Tᾱ} Esmooth(Lp, Lq) {p, q} ∈ N,Lp ̸= Lq

Table 3.2: Expansion-move edge weights

Figure 3.6: Expansion-Move

3.1.5 GrabCuts [149]

A minimal amount of user provided information can be used to set up hard constraints for
graph cut based segmentation [29]. These constraints consist of a few seed pixels chosen
in advance to be part of each segment (Fig. 3.7). The method provides a globally optimal
solution when a cost function is clearly defined. This method often produces good results
with just a few loosely placed seeds. If more seeds are added later, the new optimum can be
computed very efficiently.

The GrabCut algorithm, introduced in [150], is a practical implementation of the graph
cut idea for image segmentation. Unlike standard graph cuts, the algorithm uses iterative
estimation and allows for incomplete labeling, minimizing the amount of user input needed.
A guess based on a few “probably known” pixels will converge to a good solution in only
a few iterations. A rough box around the area containing the object of interest is often
sufficient for very accurate segmentation (Fig. 3.8).

GrabCut explicitly models the problem for color images; their smoothness term is essentially
the same as the original standard:

Esmooth(Lp) =
∑

{p,q}∈N

0 if Lp = Lq

exp

(
− ∥⟨rq, gq, bq⟩ − ⟨rp, gp, bp⟩∥

2

2σ2

)
otherwise

(3.12)

Robert J. DiBiano Chapter 3. Preliminaries 39

Figure 3.7: Small number of user provided seed pixels for initial conditions.

Figure 3.8: left:very rough user provided input, right: accurate results

Robert J. DiBiano Chapter 3. Preliminaries 40

Histograms in 3 dimensions are much sparser than one dimensional (standard histograms), for
the same number of pixels. For the data term, rather than try to extract 3d histograms, they
approximate foreground and background distributions as mixtures of Gaussian functions,
with around 5 Gaussian components each. This lets them get a good approximation with
less data. Each pixel is assigned one Gaussian Mixture Model (GMM) component k, from
the foreground or background model according to its label. So (Lp, kp) identifies a single
specific Gaussian distribution in 3 dimensional RGB space. The data term becomes:

Edata(p, Lp, k) = − log π(Lp, kp)+
1

2
log detΣ(Lp, kp)+

1

2
[zp−µ(Lp, kp)]

ᵀΣ(Lp, kp)
−1[zp−µ(Lp, kp)]

(3.13)

where π is the GMM component weight, Σ is its covariance, and µ is its mean. For concise-
ness, the RGB values of a pixel are represented by the vector zp.

Iterative estimation is useful mostly because it allows the algorithm to bootstrap itself from
very little user input, and is guaranteed to converge to some lower energy when used with the
proposed GMM data term. This is what allows for incomplete labeling. Fig. 3.8 labeled a
strip of pixels outside the bounding box as permanently background, but there was no explicit
foreground mapping. Pixels inside the box were used to estimate an initial foreground model
without any information about their true labels.

3.1.6 Discussion

Graph cuts based segmentation is state of the art in image segmentation, allowing for user
defined connectivity and object models in a way that makes it applicable to a variety of
segmentation problems, including ours. Furthermore, if its algorithmic complexity can be
overcome, it may be useful in setting up video segmentation as an optimization problem in
the future.

3.2 Texture Analysis

Hand crafted features i.e., any features that were not automatically generated by some
algorithm, are state of the art in texture analysis. Because these features tell the network
everything it knows about the input data, a network is only as good as its input features, and
a clear understanding of both the problem domain and the features is necessary for success.
Hand crafted textural features take many forms, with no one type dominating so much that
it alone can solve any problem.

Textural features refer to structural or statistical properties of a multi-pixel localized area
in an image. When basic color information isn’t enough, but full object recognition isn’t

Robert J. DiBiano Chapter 3. Preliminaries 41

a viable solution, texture can be useful to characterize objects or regions [154]. The most
basic type of texture features refer to properties of the grayscale channel of the image, but
textural features can refer to the relative positions of different color information as well.
Applying the same set of feature extractions to the Hue, Saturation, and Intensity channels
of an image is the standard way to do this.

When analyzing the texture of the intensity channel, it may be advisable to normalize by
subtracting the mean and dividing by the standard deviation before analyzing. This is
in order to account for lighting and exposure variations; as is done with normalized cross
correlation. This can also be done separately for each local region in order to account for
local lighting variations and to remove the effect of brightness/contrast on purely textural
features.

Object/region classification is only one application of texture analysis. Textural features can
be used to enable image segmentation on complex natural landscapes where there are no clear
edges and color information is not sufficient. Shape from texture is the idea of extracting 3d
orientation information by examining texture. Texture synthesis refers to using an analysis
to make a similar synthetic texture that can be applied at will.

3.2.1 Statistical

Statistical texture refers to features that are primarily based on the overall statistical prop-
erties of the region in question. These features can be further subdivided into those that
depend on the relative position of pixels; and the purely statistical ones that do not. The
latter group are called first order statistics.

Texture-based classification is generally accomplished moving an n× n sliding window over
image (or some transformation thereof) in steps of n ≤ m pixels. In this way the local region
can be characterized. Smaller windows collect less data but provide higher resolution output,
whereas larger windows can’t differentiate fine details, but collect more reliable information.
Filtering in the frequency domain, discussed below, can particularly benefit from a larger
window size.

First Order Statistics

Since pixel position is irrelevant, another way of thinking of first order statistics is those
that can be derived from the histogram. In the simplest case, each bin of the normal-
ized histogram can be used as a feature, and in fact well designed local histogram features
have shown very good results in many detection and classification tasks [1, 34, 41, 83]. Prin-
cipal Component Analysis (PCA) has proven effective tool for reducing dimensionality of
histogram and histogram-like features [131].

Local standard deviation provides a simple and effective measure of the general roughness of

Robert J. DiBiano Chapter 3. Preliminaries 42

Figure 3.9: First order statistics can be derived from a histogram.

a region. The other most commonly used first order statistics are mean, variance, skewness,
and kurtosis (Fig. 3.9).

Heterogeneity is another 1st order statistic that has seen recent use [60]. It is defined as
the fraction of pixels whose intensity is more than 10% different from the average. Rougher
surfaces tend to have higher homogeneity values.

Higher Order Statistics

Gray Level Run Length Matrix (GLRLM) is a 2d matrix with one axis corresponding to
gray level, the other to run length, with the value in each cell a count of the number of times
this run type occurs. These gray levels and run lengths are usually quantized to limit the
matrix to a reasonable size in all matrices of this general type. If the image is different along
the x and y directions, a separate matrix can be used along each direction. In these cases an
angle between 0 and 90 degrees is used to characterize the run direction. A simple GLRLM
is shown in Fig. 3.10.

Alternatively, a run length vector is formed containing the number of runs of each length;
irrespective of the brightness (Fig. 3.11). These runs can and usually should have a similarity
threshold instead of the coarse quantization of GLRLM.

A Gray Level Co-occurrence Matrix (GLCM) has both axes as pixel intensity values, and
cells contain counts of number of times this pairing occurs at a given x,y offset (Fig. 3.12). A
separate matrix is needed for each x,y offset; (0,n) (n,0) (n,n) and (-n,n) with n=1 through 5 is
an example of common offset values. The co-occurrence matrix is often added to its transpose
to make it symmetrical assuming flipping the texture doesn’t change its significance. It may
also be normalized by the sum of its elements.

Robert J. DiBiano Chapter 3. Preliminaries 43

Figure 3.10: Gray Level Run Length Matrix (right).

Figure 3.11: Gray Level Run Length Vector.

Figure 3.12: Gray Level Co-Occurrence Matrix (right).

Robert J. DiBiano Chapter 3. Preliminaries 44

Figure 3.13: Neighboring Gray Level Dependence Matrix.

Sum and Difference Histograms are a similar but less computationally intensive alternative
to GLCM. Used together they provide almost as much discrimination as co-occurrence with
lower memory and processor usage [175].

Neighboring Gray Level Dependence Matrix (NGLDM) is a 2d matrix where the axes are
pixel values and number of similar pixels in their neighborhood; and the values are counts
for each combination (Fig. 3.13).

For Run Length Matrix (RLM), Color Co-occurrence Matrix (CCM), and NGLDM, once
the matrix itself is completed, various statistical measures are computed to be used as the
actual features. Notably, Haralick et al. [71] suggested the quintessential set of features
for the CCM based on various statistical properties. These include contrast, correlation,
variance, average, second moment, inverse difference moment, entropy, and other statistical
properties.

Direct multivariate approach

This approach is to use a single one-dimensional vector of pixel values directly as features,
applying Principal Component Analysis (PCA) or Partial Least Squares Discriminant Anal-
ysis (PLS-DA) to reduce dimensionality. Converting from 2 dimensions to 1 is accomplished
by attaching rows back to back, or some more complicated unfolding. One major weakness
of this approach is that spatial information perpendicular to the direction of unwrapping is
lost [22]. Therefore the image is augmented with different altered versions of itself to form
a multivariate image [22].

Angle Measurement Technique(AMT)

The Angle Measurement Technique (AMT) [6] was originally designed as a tool for charac-
terizing geological lines. As shown in Fig. 3.14, the average angularity at different scales is
plotted. The resulting plots are reminiscent of fractal analysis, but do not assume similar
properties at different scales. Later the same method was used to analyze texture by convert-

Robert J. DiBiano Chapter 3. Preliminaries 45

Figure 3.14: Angle Measurement Technique.

ing it to a 1 dimensional function, then analyzing the angularity of the plotted function [55].
The conversion is accomplished by individually sampling rows/columns of the input, or “un-
wrapping” the image into a single long array along a snake or spiral path. The similarity
of the resultant spectrum to the Fourier spectrum was pointed out, and it was proposed
as a general purpose signal analysis. PCA has been shown to be effective in reducing the
dimensionality of the resultant spectra.

3.2.2 Structural

Structural texture analysis involves breaking down a texture into a repeating series of texture
elements, the texture being defined in terms of those primitives [70]. The type and quality of
these primitives combined with their spatial relation to each other describes the texture. A
primitive can be a particular arrangement of pixels, but it can also be a group of pixels that
share similar properties, for example, a connected set of pixels with similar intensity or edge
direction [70]. A texture can be classified as weak or strong based on the degree of spatial
relation between primitives. This can be quantified by the number of each primitive within
some fixed range, some fixed angle, or the minimum distance to each type of primitive from
the current primitive. An example of extracting groups of similar primitives from an image
is shown in Fig. 3.15.

Many of the structural methods that have been proposed only work well on regular textures,
and they are rarely used in texture analysis [22]. Nevertheless, with well designed primitives
that are statistical or extracted features rather than templates, it is a theoretically sound
way to recognize some types of textures. The same idea has been applied to part based and
non-rigid object recognition with good results [34, 102].

3.2.3 Transform Based

These types of features are obtained by applying some type of transform to the image before
using the result. After transformation, values may be used directly or some type of statistical

Robert J. DiBiano Chapter 3. Preliminaries 46

Figure 3.15: Extracting textural primitives from an image. Primitive frequency and cluster-
ing characterize texture.

method may be applied.

Convolution by Mask

The most basic type of transform is an image filtered by convolution by a mask. Convolution,
designated by the ∗ operator, is defined as:

f(x) ∗ g(x) =
∫ ∞

−∞
f(τ)g(x− τ)dτ (3.14)

where f and g are 1d functions in space. In the case of an image, in 2 dimensions, the
equation becomes:

f(x, y) ∗ g(x, y) =
∫ ∞

τ1=−∞

∫ ∞

τ2=−∞
f(τ1, τ2) · g(x− τ1, y − τ2)dτ1dτ2 (3.15)

and for discrete digital images:

f [x, y] ∗ g[x, y] =
∞∑

n1=−∞

∞∑
n2=−∞

f [n1, n2] · g[x− n1, y − n2] (3.16)

When an image is convolved with a filter, f is the entire image, and g is the (usually much
smaller) filter. An example of image convolution is shown in Fig. 3.16, where a pair of circles
are blurred by convolving them with an elliptical Gaussian mask.

Convolution by the Sobel mask:

Robert J. DiBiano Chapter 3. Preliminaries 47

Figure 3.16: Convolution of image “object” by Gaussian mask “psf”.

Figure 3.17: lena.png (left), horizontal Sobel filtered (middle), and vertical Sobel filtered
(right).

Gx =

[−1 0 +1
−2 0 +2
−1 0 +1

]
∗ Pblur (3.17)

marks out vertical edges in the image, or horizontal edges if rotated 90 degrees (Fig. 3.17).
or the results of both transforms can be combined to mark out all edges. The eigenfilter
mask developed by Ade (1983) [203] is another type of mask, but is very computationally
intensive. It relies on decomposing the training examples into a linear combination of sub-
images. The most relevant subset of these sub-images, i.e., the set that can reproduce the
original data with smallest error, are then used as filtering masks. Fig. 3.18 shows a filter
bank of the 4 most relevant filters for training data of faces. Using these filters on an image
containing faces of the proper scale will create features that detect and classify faces.

Frequency Transform Methods

The Fourier theorem states that all continuous periodic functions can be approximated by
the sum of a series of sine and cosine functions:

Robert J. DiBiano Chapter 3. Preliminaries 48

Figure 3.18: Eigenfilters computed from the ORL Face database(Eigenfaces.png, Source:
Ylebru - Wikimedia Commons).

Figure 3.19: All periodic functions can be approximated by the sum of a series of sine and
cosine functions.

f(x) =
1

2
a0 +

N∑
n=1

[
an cos(nx) + bn sin(nx)

]
(3.18)

where a0, an, and bn are constants that can be calculated easily for known functions. As
the length of the series, N , approaches infinity, the approximation becomes arbitrarily close
to the original function. As a practical matter some functions with discontinuities can be
approximated as well, with minor artifacts that eventually vanish as N approaches infinity.
An example of Fourier series approximation is shown in Fig. 3.19. Non-periodic signals with
finite limits (such as images) can be handled as well by treating them as one period in an
imaginary larger periodic signal.

The weights of the various sine/cosine functions used in these approximations can be used
to characterize the “frequency spectrum” of the waveform (Fig. 3.20). Lower frequencies
correspond to larger, coarser shapes, and higher frequencies correspond to finer patterns,
and are of course required to estimate sharp edges. This idea of frequency characterization

Robert J. DiBiano Chapter 3. Preliminaries 49

Figure 3.20: Frequency Spectrum.

and analysis has extremely broad applications, and is of particular interest for textural
analysis.

The idea of frequency analysis can be easily extended to 2 dimensions and spatial frequency
rather than temporal. With the assumption that the image is one cycle of an infinitely
repeating, even function, equation 3.18 simplifies to:

f(x) =
1

2
a0 +

N∑
n=1

an cos(nx) (3.19)

Furthermore since the NyquistShannon sampling theorem states maximum frequency that
can be uniquely represented in a digital image is 1 cycle / 2 pixels, the maximum frequency
N is far from infinite.

Frequency Transform Methods generally perform a frequency transform on a local window,
generating a 2d matrix. Then various properties of the resulting matrix are extracted as
features, as with the CCM. The most basic are 2d fast Fourier transform and Discrete
Cosine Transform (DCT).

Fast Fourier Transform and Discrete Cosine Transform Digital images are not
continuous functions, but rather arrays of discrete values, so equation 3.18 becomes:

F (x) =
1

2
a0 +

N−1∑
n=1

an cos

[
πn

N

(
x+

1

2

)]
(3.20)

where F is a discrete function, and N is the image width/height in pixels. This is the basic
idea behind the discrete cosine transform; and the DCT can be taken over a localized region
(commonly 4x4 or 8x8) by a simple linear filtering, although it may use a sliding window
rather than calculate at every pixel. One weakness of approximating an infinite sine wave
by a filter that cuts off sharply after 4 or 8 pixels is that this causes boundary artifacts and
poor convergence at the boundaries [176]. A bank of DCT filters is shown in Fig. 3.21.

The FFT is usually taken over a larger region - for example [22] uses the magnitude of the

Robert J. DiBiano Chapter 3. Preliminaries 50

Figure 3.21: Discrete Cosine Transform Filters.

Figure 3.22: Fast Fourier Transform Results.

2D Fast Fourier Transform (2DFFT) on entire 479 × 508 pixel images of steel surfaces to
characterize their texture. In this case the FFT magnitudes are filtered by a Gaussian kernel
with σ = 0.5. The FFT is generally used to characterize frequency over a wide area, or an
entire image for compression purposes, so it is not very common in modern texture analysis,
where well localized information is preferred. And example of the FFT magnitude for a 184
× 184 image is shown in Fig. 3.22. The center represents low frequency components. It can
be seen from this example that most real images have a cluster of higher weights near low
frequency “DC” values, and sometimes lines of higher magnitude along the x/y axes and
along the directions of significant textures in the image.

Gabor Transform and Wavelet Transforms The Gabor transform is a variant of the
Fourier transform that analyzes the phase and frequency content of a localized region only. A
Gabor filter is similar to a DCT filter in a single direction, but it is multiplied by a Gaussian,
so its maximum magnitude falls off gradually rather than cutting off suddenly at the filter
boundary (Fig. 3.23). This soft cutoff eliminates the kind of boundary artifacts that happen
with DCT. Image analysis by Gabor transform is believed to be similar to the workings of
the human visual system, and has been applied to things like Chinese character recognition
and face recognition. Additionally, Gabor features have been widely used in texture based
segmentation [22].

Wavelet transform is a more advanced method, similar to Gabor transform (which is often
considered a subset wavelet) but with different filters. These filters are generated in such
a way as to have various desirable mathematical properties, while still sampling localized

Robert J. DiBiano Chapter 3. Preliminaries 51

Figure 3.23: Gabor Filters.

Figure 3.24: A Meyr Wavelet.

frequency-type information. The normalized energies of the wavelet coefficients can be used
directly as features. Other popular features are entropy and averaged L1-norm [22]. The
wavelet transform is superior to the Gabor transform in that its properties allow it to have
variable resolution in the frequency domain. In real images, the vast majority of frequency
information is localized in a few parts of the frequency domain (in fact this observation is
the basis of jpeg compression) so this is a very useful feature. Additionally many wavelet
transforms maintain spatial and frequency localization better when discretized than Gabor
features [22]. Because of these advantages and their competitive performance, Wavelet Tex-
ture Analysis (WTA) methods are considered to be the state of the art in texture analysis.
A simple example of a 1d wavelet is shown in Fig. 3.24.

3.2.4 Model Based Approaches

Model based texture recognition involves creating a texture model, with some parameters,
then finding the parameters that best approximate the data. The biggest advantage of these
methods are that they allow easy generation of synthetic textures.

Autoregression Model

The basic autoregression model assumes each pixel value is some linear function of its neigh-
bors plus random noise/error:

Robert J. DiBiano Chapter 3. Preliminaries 52

Figure 3.25: A simple Markov chain.

Ip =
∑
q∈N

krIq + ep (3.21)

where p and q are pixels in the same neighborhood N in image I, kr is a parameter associated
with the relative position r of q with respect to p, and ep is noise in the result. So for example
if neighbors are defined as the 4 adjacent pixels to p, there are 4 values of r.

These 4 parameters plus the noise level can be calculated by finding the parameters that
minimize the MSE:

∑
p

e2p =
∑
p

(
Ip −

∑
q∈N

krIq

)2
(3.22)

These model parameters can be used directly as features for machine learning [167].

Markov Random Fields

A Markov random process is a process which can be modeled by a Markov chain [24]. A
Markov chain is a memoryless process where the probability of an event depends only on the
current state, not on any previous states. A graph representing a Markov chain is shown in
Fig. 3.25; each circle represents a state, and each arrow is a state transition. More complex
nth order Markov chains can depend on the last n states instead [24].

In the simplest case, one dimensional textures, or textures where rows are assumed to be
independent, have been modeled directly by Markov chains [42]. In this case, each state
represents a pixel value, and transitions correspond to the likelihoods of the next value,
based on one or more previous values. The idea can be extended to two dimensions by
basing the probable pixel value on the value of multiple immediate neighbors rather than
multiple previous values. The direct 2 dimensional extension of a Markov chain bases pixel
value off of the values of half its neighbors, and uses it to help determine the values of the

Robert J. DiBiano Chapter 3. Preliminaries 53

Figure 3.26: A Markov Mesh.

other half. This is called a Markov mesh (Fig. 3.26). An dependence of this type where each
value can be successively generated from previously generated ones in order is called causal.

For modeling image textures, it is more logical and useful to replace the Markov mesh with
an undirected graph [24], where the value of every pixel is dependent on the values of all of
its neighbors:

Lp|P = Lp|Np p ∈ P (3.23)

where Lp is the label (value) of pixel p, Np is the neighborhood of p in all directions (excluding
p), and P is the entire image. This is a non-causal model known as a Markov random field.
Homogeneous textures can be defined as those where a pixel’s probable value is dependent
only on the local neighborhood [43]; these are the types of textures a Markov random field
can model. The parameters of the model that best models a texture can be used as feature
vectors for classification [38].

Fractal Models

The definition of a fractal shape or process is one that is self similar at different scales.
Many real world objects do in fact exhibit similar properties when examined different scales,
over many orders of magnitude [141]. Some natural textures, which are poorly described by
classical geometry, can be described by fractal models [94,124].

For example, the fractal properties of surface roughness can be used to characterize a texture
[141]. A random function I(x) is called a fractal Brownian function if

Var(∆I) = σ2|∆x|2H (3.24)

where ∆x is any distance in pixels, ∆I is the intensity difference at that offset, and H is
a constant called the Hurst parameter, and 0 < H < 1. The fractal dimension for a 2
dimensional function or curve is

Robert J. DiBiano Chapter 3. Preliminaries 54

D = 3−H (3.25)

This fractal dimension is a useful and scale invariant feature that can be used to measure
the “roughness” of real world textures in a useful way - as a practical matter equation 3.24
holds true for uniformly lit homogeneous fractal surfaces [141]. Of course real images are not
fractal at all scales, so we need to pick upper and lower limits for ∆x. Fortunately, equation
3.24 can be used to measure the suitability of fractal dimension to characterize a texture, as
well as to actually characterize it. The Angle Measurement Technique of section 3.2.1 uses
a similar idea, but makes no assumption of self similarity.

Chapter 4

Food Image Analysis for Measuring
Food Intake in Free Living Conditions

4.1 Introduction

Nutritional research is of particular practical interest in the modern world in light of the
still not fully understood effects of heavily manufactured foods on health and the growing
prevalence of obesity worldwide. Hence, there is an abundance of active research along these
lines, a key component of which is efficiently and accurately measuring food intake. The most
accurate method of measuring intake is the energy balance method, where total daily energy
expenditure (TDEE) is measured with doubly labeled water. This method is prohibitively
expensive in terms of materials and expertise, however, and does not quantify nutrient
intake. The digital photography of foods method has been shown to be accurate in cafeteria
settings [189], and the RFPM is accurate in naturalistic/free living conditions [119, 120].
When using these methods, trained human raters estimate food intake based on these images
but the process is labor intensive, with the most time intensive task being food identification,
which necessarily precedes identifying a match for foods in a nutrient database for calculation
of nutrition information.

This chapter presents an automated image analysis application that takes digital food images
as input and provides food identification and intake/nutrition information as output. It
makes use of a large database of sample images with known weights and nutritional data
to compare against. The application consists of a number of image processing modules,
including segmentation, pattern classification, and volume estimation. Ideally it is fully
automated, and in partially automated mode it greatly simplifies the food identification
and volume estimation processes. The fully automated mode is primarily discussed in this
chapter.

Our food recognition system is intended to be a complete system, potentially fully automated

55

Robert J. DiBiano Chapter 4. Food Image Analysis 56

from beginning to end. i.e., food snapshot in, nutritional intake out. It also necessarily needs
to allow for manual intervention at any point along the process. For our system, food images
are taken before and after meals, and the difference is used to estimate nutritional intake.

As discussed in sections 1.1.1 and 2.1.3, there are 3 major problems associated with food
image analysis. Firstly, segmentation of multimode foods (single foods with multiple seg-
ments with different properties). This is difficult because in order to segment these type of
foods into only one segment, classification must be done during or before segmentation. But
for large numbers of food types, classification becomes prohibitively hard without prior seg-
mentation. Secondly, computationally feasible classification with thousands of classes, with
multiple membership allowed, and a meaningfully sorted list of runners up for classifications.
This is difficult because for most machine learning algorithms, either computation time grows
exponentially with the number of classes, or only the most likely (first place) classification
is meaningful. The third problem is finding some method of volume estimation. This re-
quires us to somehow guess 3d information from a 2d image, or come up with a very cheap
and user friendly way of 3 dimensionally scanning an object without any equipment beyond
an average cell phone. Our system solves the second and third problems. For the first, it
segments training images automatically, but still requires simple manual segmentation for
testing images.

4.2 Contributions

This system makes several contributions. It is the most advanced published complete system
of its type. It has significant and more extensive data on 2d food volume estimation than
any study of its type, and compares the results against those of trained human analysts.
It presents a novel food recognition scheme, which provides multilabel classification on a
large number of classes parallelizably, in linear time with number of classes, and generates
meaningful runners up. Much of research [118, 125, 144, 145, 205, 207] in the area does not
meet these requirements, which are absolutely necessary to solve the problem. To the best
of our knowledge, at the time it was published our food recognition scheme was the most
advanced and accurate system of its kind that fulfilled these requirements. Our system was
published in the Proceedings of the SPIE on Medical Imaging [51].

4.3 Methods and Algorithms

Our algorithm is comprised of four major portions, preprocessing, segmentation, classifica-
tion, and volume estimation. During preprocessing the image’s color, scale, and orientation
are analyzed and normalized. During segmentation, the part of the (normalized) image con-
taining food is detected. During classification, the food region is compared to known foods
in a database and assigned a class. Finally in the volume estimation step, the surface area

Robert J. DiBiano Chapter 4. Food Image Analysis 57

Nutritional

Data
Preprocessing Segmentation

Input

Image
Classification

Volume

Estimation

Figure 4.1: High level block diagram of automated food photo analysis.

is cross referenced with database info to estimate the food mass, which can be used with the
database entries to give nutritional data. A high level block diagram of the process is shown
in Fig. 4.1.

We want our system to be as automatic as possible, and to smoothly integrate any necessary
user corrections into the process. This means giving meaningful feedback after each process-
ing step. Failures during the preprocessing, segmentation, and volume estimation steps can
be corrected straightforwardly (a few mouse movements or keystrokes), so their algorithms
are not affected much. However, in order for the classification step to support simple user
intervention it needs to provide a list of the most likely alternative classifications that a user
can take in at a glance.

4.3.1 Preprocessing

There are a two main preprocessing tasks that are needed. First, we need to normalize the
scale and orientation of the image. Second, we need to normalize the color differences due
to lighting.

Scale/Orientation

In anything but laboratory conditions, the distance and angle of the viewpoint vary from
image to image. It is necessary to know the scale and orientation of a given image to estimate
the food volume based on it. Accurate scale is also necessary for the feature extraction
that precedes the machine learning used for the classification step, excepting scale invariant
features. One possibility is to use camera metadata, but a given camera may not have it,
and it may be inaccurate. The other possibility is to use an object of known dimensions in
the image as a reference.

The most common approach is to use a patterned reference card [118]. Several authors
[145, 205, 207] use a card with multicolored squares on it, which can also be used for color
normalization, but they require the user to manually click on each card corner. A black and
white bullseye patterned reference card can be detected automatically [121]. A black and
white card can be used to normalize black and white levels, and white balance; so it still
provides basic color normalization.

Robert J. DiBiano Chapter 4. Food Image Analysis 58

Figure 4.2: Feature rankings.

Alternatively, a plate of known dimensions can be used as a reference [80]. Ellipse detection
is a solvable problem, so automatic detection is possible, and the fact that plates are circular
and lie flat against a table makes them ideal for estimating orientation and scale. In a free
living environment, a given user might use the same plates every meal; but not reliably.
But in a cafeteria environment, where much meal research is done, plates of standardized
dimensions are the norm.

More sophisticated volume estimation methods use multiple images for 3d modeling [50,145],
with results similar to or slightly better than human perception. They are more accurate
than 2d estimation, and may even be more accurate than human perception. They still
require the same reference card or object discussed above.

For our system we chose to use the bullseye patterned cards of [121] because of the ease of
automatic detection, and alternatively use a plate of known dimensions in cases where a card
is not available. The volume estimation accuracy that can be achieved is only a little worse
than human perception [45, 119, 155, 188, 190], and it minimizes the amount of interaction
required by the user taking the photos or reviewing them.

Automatic reference card detection is achieved using the method of [97], with a reference
card like the one depicted in Fig. 4.2. First the image is binarized, with local thresholding
to account for variance in local lighting conditions. This is accomplished by using a square
averaging filter to find the local brightness, and subtracting this from the original image.
In the output, pixels with positive values are brighter than the local average and become
white, and those with negative values become black. They then use a pattern detection
algorithm that produces maximal response near the center of areas with mirror symmetry
and alternating color. In real-world pictures, the two strongest such responses in a given
photo are usually the patterns on the card. Once these 2 peaks are located, simply connecting
them with a line segment and using that segment as the seed pixels for a region fill on the
binary image will produce a single segment for the entire card. The segment is smoothed
by Gaussian smoothing to get rid of any rough edges, and at that point Harris corner
detection [73] can be applied to find the 4 corners.

Our ellipse detection is via a public implementation of the efficient ellipse detection of [195].
It considers every pair of edge points as possible ends to the major axis of an ellipse, and
scores these possibilities by Hough transform [77]. In short, The Hough transform builds a

Robert J. DiBiano Chapter 4. Food Image Analysis 59

parameter space for the object to be matched. For an ellipse centered at ⟨i, j⟩ with axis radii
a and b and rotated to angle θ:

((x− i) cos(θ) + (y − j) sin(θ))2

(a2)
+

((x− i) sin(θ)− (y − j) cos(θ))2

(b2)
= 1 (4.1)

where x and y are the coordinates of the point on the ellipse. There are 5 parameters, so each
pixel in the image generates a hyperplane in a 5 dimensional space corresponding to every
possible ellipse that it could lie on. This is used in a voting procedure - multiple hyperplanes
are accumulated and summed in the Hough space, and regions where many planes intersect
are maximized and correspond to good matches. Needless to say, it is helpful to limit
the range of parameters to keep the 5 dimensional accumulator space as small as possible.
Even simplified, ellipse detection is processor and memory intensive, so to further increase
efficiency we perform a multiscale pyramidal search similar to the manner of [26], and use
results at lower resolutions to sharply limit parameters at higher ones.

The details of the scaling and geometric transformation are discussed in section 4.3.4, since
aside from potentially using scale information to improve classification, it is primarily a
volume estimation issue.

Color Normalization

There are several common methods for automatic color normalization in photographs. The
naive “gray world” algorithm assumes the global average of red, green, and blue pixels in an
image will be the same - for an image P with 3 color channels r, g, and b:

Pavg =
P̄r + P̄g + P̄b

3
(4.2)

Prgb(x, y)
′ =

⟨(
Pr(x, y) + (Pavg − P̄r)

)
,
(
Pg(x, y) + (Pavg − P̄g)

)
,
(
Pb(x, y) + (Pavg − P̄b)

)⟩
(4.3)

where x and y are individual pixel coordinates. The naive “white patch” algorithm assumes
that the brightest area in a given photo is white:

Pgray(x, y) = (Pr(x, y) + Pg(x, y) + Pb(x, y)) (4.4)⟨
i, j
⟩
= argmax(Pgray) (4.5)

Prgb(x, y)
′ =

⟨(
Pr(x, y)×

255

Pr(i, j)
)
)
,
(
Pg(x, y)×

255

Pg(i, j)

)
,
(
Pb(x, y)×

255

Pb(i, j)

)⟩
(4.6)

where x and y are individual pixel coordinates, and
⟨
i, j
⟩
are the coordinates of the brightest

pixel in the image. More sophisticated methods try to guess which areas are gray/white by
various methods [197], or maximize contrast on each color channel separately [185], or a

Robert J. DiBiano Chapter 4. Food Image Analysis 60

Figure 4.3: Yellow fluorescent light spectrum.png(left), Spectrum of blue sky.png(right)
(Source: Deglr6328 - Wikimedia Commons)

mixture of both these methods [169]. Another approach is to find color balance under
different lightings, then require a human user to estimate the lighting type [63] or try to
predict the lighting type from the correlation of image features [39, 99].

As a practical matter, there is a limit to the estimation quality without a known reference
object, or at least scene context to know what is actually white. So for professional digital
photography it is common to use a white reference object [132], or a multicolored reference
card [140]. At each visible wavelength λ, the measured brightness depends on lighting, the
object’s color, and the sensor’s spectral response. Biological or silicon, a sensor does not
detect specific wavelengths, but sums the energy according to its spectral response such
that:

C(measured) ∝
∫ ∞

λ=0

Cλ(lighting) · Cλ(object) · Cλ(sensor) (4.7)

where C(measured) is the amount of energy of a certain color measured, aka. brightness.
Cλ(lighting) is the spectral energy of the light source at a given wavelength λ, Cλ(object) is
the spectral characteristics of the object (what colors of light it reflects), and Cλ(sensor) is
the spectral response of the sensor(how much the voltage changes per unit of brightness at
the given λ). Because of this, for light sources such as fluorescent lighting that have narrow
spikes in their spectral response (Fig 4.3) are particularly problematic, as they attenuate
most of the spectral response of objects in that image, making it hard to estimate what
they might look like under white (spectrally flat) lighting. So color correction is always an
estimate, although multiple reference colors with known spectral responses should be able
to improve it in many situations.

In [121], the reference card is black and white, which can serve as a base to normalize color
channels. Since these cards can be printed out simply, must be used for scale estimation
anyway, and color balanced from a white reference often gives good results, we continued
using this method. With black and white levels the colors can be balanced such that:

Pr(x, y)
′ =
(
(Pr(x, y)− µBr + σBr)×

255

σBr + µWr − µBr + σWr

)
)

(4.8)

Pg(x, y)
′ =
(
(Pg(x, y)− µBg + σBg)×

255

σBg + µWg − µBg + σWg

)
)

(4.9)

Robert J. DiBiano Chapter 4. Food Image Analysis 61

Pb(x, y)
′ =
(
(Pb(x, y)− µBb

+ σBb
)× 255

σBb
+ µWb

− µBb
+ σWb

)
)

(4.10)

Black and white pixel segments B and W are found from the local thresholding described
for reference card detection in section 4.3.1 above. Their means and standard deviations are
used to white balance the 3 channels r, g, and b in the image P .

Other preprocessing

Additionally, it might be necessary to do image enhancement, such as denoising, deblurring,
sharpening, or contrast enhancement [53]. However, since modern digital cameras are of
good quality and take very high resolution images, these are used rarely except in archaic
systems.

4.3.2 Segmentation

If a single food has areas with different colors/textures (which many do [16]), then standard
approaches to segmentation are unlikely to work, and segmentation by classification is re-
quired for optimal performance. This creates a chicken and egg problem, where either one
problem must be solved suboptimally or some iterative approach must be taken. This is
discussed in more detail in section 2.1.2.

We experimented with segmentation by classification, and it worked well for small numbers
of food types. As the number of food types got larger, we used median filtering, which
is a nonlinear filter, and relatively slow compared to linear filters like Gaussian blur or
averaging. As we added even more food types, this broke down as well. With a region
matching a dozen or more mutually inclusive or nearly identical food types, each pixel cannot
be classified separately; connectedness becomes a big issue. A possible solution would be
to solve some sort of optimization problem, perhaps setting it up as a graph cuts problem,
like the segmentation described in section 3.1. The classification result for each food type
would be treated as an image channel. Unfortunately, a high resolution image with not 3
but thousands of channels is difficult to even hold in memory, and an optimization with
that many classes would be computationally unfeasible. Nevertheless, trying this approach
with some simplifying assumptions and a multiclass Graphcut algorithm might be a good
direction for future work. In the meantime, we choose to segment and classify separately,
with segmentation done first.

We detect the edges in the image via Canny edge detection, which consists of Gaussian
blurring, followed by Sobel edge detection along both axes, giving gradient images:

Pblur = g(σ) ∗ P (4.11)

Robert J. DiBiano Chapter 4. Food Image Analysis 62

Gx =

[−1 0 +1
−2 0 +2
−1 0 +1

]
∗ Pblur (4.12)

Gy =

[−1 −2 −1
0 0 0
+1 +2 +1

]
∗ Pblur (4.13)

where g(σ) is the 2d discrete Gaussian function used for blurring, and P is the image. The
images are combined into a gradient magnitude image and a gradient direction image by:

G =
√

G2
x +G2

y (4.14)

Θ = atan2(Gx, Gy) (4.15)

Next, non-maximum suppression is applied perpendicular to edge direction to thin edges to
around one pixel wide, and edges detected in anomalous (low gradient) regions are removed.
The rest of the edges are rated weak or strong depending on gradient intensity, and strong
edges plus weak edges connected to strong edges form the final edge map.

Once the edges are detected we detect the plate. Ellipse detection (discussed in section 4.3.1)
on the edge map is used to locate the plate in the scene [158].

We assume the plate is white, which is usually true, and that there is only one food per
plate, which is true for our training database but not in actual meals. We experimented
with k-means segmentation [164], but not knowing the exact number of foods in a meal in
advance, picking a reasonable k was a problem. As noted above, multimode foods are hard to
segment without classification. Methods that set k automatically still require a threshold to
be chosen, and over segment multimode foods even when optimal. In any case, for multiple
food segmentation the user manually marks the general regions for GrabCuts segmentation.

We use simple thresholding to separate plate pixels from food pixels. This initial segmenta-
tion is very poor, and is used as an initial guess for GrabCuts [149] to do the final, detailed
segmentation. The OpenCV [30] implementation of GrabCuts allows the user to define initial
conditions with 4 classes of pixels: known foreground and background pixels, and probable
foreground and background pixels. The algorithm then iterates and returns improved clas-
sifications for the pixels. Fig. 4.4 illustrates the segmentation process.

Robert J. DiBiano Chapter 4. Food Image Analysis 63

Segmented

Food

Region

Edge

Detection

Ellipse

Detection

Input

Image

Rough

Segmentation

Grabcuts

Segmentation

Figure 4.4: Segmentation.

4.3.3 Classification

Ambiguous food classes, foods that belong to multiple classes, and classes that overlap
with or are subsets of other classes are common. So user corrections aside, we require a
classification scheme that allows for multiple class membership and provides a meaningfully
sorted list of most likely classes. Since there are many, many kinds of food, our classification
algorithm also needs to be applicable to a very large if not open ended number of classes.

We originally tried standard multiclass ANN with backpropagation, but it stopped working
after we reached a total of around 30 classes. We experimented with an implementation of
multi class SVM as well, but it became computationally unfeasible even more quickly. There
are much better multiclass SVM implementations than the one we tried, but theoretical and
experimental analysis does show that even under the best conditions, with supercomputing
capability and the best algorithms, SVM are not well suited to very large numbers of classes
[111].

We also observed that the standard way of class scoring in inherently multiclass classifiers
does not provide meaningful runners up and account for different but visually identical foods
- requirements for large food datasets. The reason why is obvious after a brief examination
of how standard multiclass classification works in neural networks. Feature vectors are fed
into a network, and it produces an output vector:

F = ⟨o1, o2, o3, ..., oC⟩ (4.16)

where C is the number of food classes. The target vector for a sample of food class c is:

Tc = ⟨o1, o2, ..., oc, ..., oC−1, oC⟩ = ⟨0, 0, ..., 1, ..., 0, 0⟩ (4.17)

with zeros everywhere but at the output associated with that food class. To classify an
arbitrary feature vector we find the closest target vector by minimizing the MSE ∥F−Tc∥.

Robert J. DiBiano Chapter 4. Food Image Analysis 64

Similarly, the training process for any type of classifier seeks to minimize the MSE between
the training samples and the targets for their known labels, albeit under other classifier
specific constraints. Consider the case where a sample is similar to multiple classes - to get
a sorted list, we want a feature vector with multiple high values like:

F = ⟨0, .8, .6, .9, .95, .5, 0, 0, .7, 0⟩ (4.18)

The correct classification, class 5:

T5 = ⟨0, 0, 0, 0, 1, 0, 0, 0, 0, 0⟩ (4.19)

gives an MSE of 1.60, and an incorrect classification of class 4 gives an MSE of 1.63. A
target where only the most likely class has a high value such as:

F = ⟨0, .1, .1, .1, .95, .1, 0, 0, .1, 0⟩ (4.20)

gives an MSE of 0.23 for the correct classification, an MSE of 1.32 for incorrect. So min-
imizing the MSE on a standard multiclass classifier incentivizes “guessing” only the most
likely class and setting all other outputs near zero; so it is fundamentally incompatible with
runners up. The problem only becomes more dominant with large numbers of classes.

We considered several different designs for our new classifier. Although SVM classifiers are
inherently binary (2 class), they have many multiclass extensions. They achieve this by
combining ensembles of binary classifiers [76]. These fall into 3 major groups, one-vs-all,
one-vs-one, and hierarchical trees. These methods are also applicable to the general problem
of multiclass classification. One-vs-one seemed likely to become unmanageable with large
number of classes since for n food types it requires n(n − 1)/2 individual classifiers, giving
O(n2) if these classifications become the dominant part of the algorithm. A naive hierarchical
tree seemed unlikely to be able to produce a sorted list of runners up, since a food type likely
to match can be eliminated early on if it happens to be on the node next to a more likely
one. A more reasonable hierarchical implementation via clustering is discussed in chapter
7.3.

After considering various designs, we settled on our One Versus The Rest (OVTR) approach,
since it should work in time linear with number of classes and could provide good confidence
scores for memberships in multiple classes. It also largely handled the problem of classifying
multimode foods; its useful properties are detailed in the discussion in section 4.5.3.

Classifier Overview

Texture-based classification is generally accomplished moving an n× n sliding window over
an image (or some transformation thereof) in steps of m pixels such that m ≤ n. Feature

Robert J. DiBiano Chapter 4. Food Image Analysis 65

vectors are then known at every window center, and can be estimated elsewhere by a nearest
neighbor approach.

Our system uses a block-based feature extraction, where n = m = 8. To avoid training from
background, only windows completely inside the food region are used. A feature vector is
generated for each 8x8 square inside each region, as shown in Fig. 4.5. This only includes
squares that are fully inside the region; areas intersecting the region boundary are not used
for either training or classification. Rather than create a monolithic classifier to distinguish
between hundreds of foods, one “specialist” neural network is assigned to recognize each
food. All 8x8 patches inside regions of interest are examined by each specialist network,
as shown in Fig 4.5. Each specialist network looks at all feature vectors, giving a verdict
of “positive” or “negative” for each patch. The number of positive votes by each specialist
network is counted and the results are sorted. The most likely classification is the one that
gave the most votes, as shown in Fig. 4.6. The classification process is shown in Fig. 4.7 and
algorithm 3.

Algorithm 3 “One vs. the Rest” food classification

for Each Food segment Sz do
Let votes V1 to VF := 0
for i := 1 to max(x) + 1−m step n do

for j := 1 to max(y) + 1−m step n do
Window w := P (i : i− 1 +m, j : j − 1 +m)
if w ⊂ Sz then

Extract Feature vector fv := f(w)
for Each Food Type f ∈ F do

Classify with cf : match := cf (fv)
if match = true then

Add votes: Vf := Vf + 1
end if

end for
end if

end for
end for
Classify segment: food type Tz := f | Vf = max(V)
Sort and store Vf for later use

end for

S is the set of food segments in the image, V is an accumulator array of votes for each of F
food types, w is the current window, f() is a feature extraction algorithm, and c is an array
of binary classifiers, one for each food type.

Robert J. DiBiano Chapter 4. Food Image Analysis 66

Figure 4.5: Feature vector generation.

…

…

Final

Classification:

Pastrami

Figure 4.6: Classification results.

Classifier A

Classifier B

 ⋮⋮⋮⋮

Classifier Z

Classification

Results

Calculate Feature

Vectors on 8x8

sub regions

Preprocessed

and Segmented

Image

Saved

Classifiers

Count

Votes

Count

Votes

Count

Votes

S
o

rt

Figure 4.7: OVTR Classification.

Robert J. DiBiano Chapter 4. Food Image Analysis 67

Classifier Training

Our individual specialist classifiers are simple backpropagation networks, with 2 hidden layers
with 10 neurons each. We used Levenberg-Marquardt backpropagation training function.
Our learning function was Gradient descent with momentum weight and bias. For each food
type, random examples are gathered from the training set, and an equal number of negative
examples are picked at random from among other types. A negative example is a (preferably
statistically representative) example of anything that is not a member of the target class.
Our batch size is currently limited to around 600 feature vectors to speed up processing; half
positive and half negative examples. The output layer of each specialist contains a single
neuron responsible for making a true/false determination of whether the data matches its
food type. During training, the target output values are set to 1 for positive examples and
0 for negative. The training process is shown is shown in Fig. 4.8 and algorithm 4.

Algorithm 4 “One vs. the Rest” training

Let length of training data l := 0
for Each Training Food segment Sz do

for i := 1 to max(x) + 1−m step n do
for j := 1 to max(y) + 1−m step n do

Window w := P (i : i− 1 +m, j : j − 1 +m)
if w ⊂ Sz then

l = l + 1
Extract Feature vector vl := f(w)
save food type of sample typesl = type(Sz)

end if
end for

end for
end for

for Each Food Type f ∈ F do
for i := 1 to I step 2 do

pick a random k | typesk ≡ f, vk /∈ d
Training data d(i) := vk
Target t(i) := 1
pick a random l | typesl ̸≡ f, vl /∈ d
Training data d(i+ 1) := vl
Target t(i+ 1) := 0

end for
train(cf , d, t)

end for

Robert J. DiBiano Chapter 4. Food Image Analysis 68

Save

Classifiers Calculate Feature

Vectors on 8x8

sub regions

Preprocessed

and Segmented

Image

Set up and Train

“specialist” NN

for each food

type

Figure 4.8: OVTR Training.

Feature Selection

We used Haralick features [72], which are extracted from the Color Co-occurrence Matrix
(CCM) for an image block rather than the block itself, and include contrast, correlation,
variance, average, second moment, inverse difference moment, entropy, and a number of
others. In addition to Haralick, we used various other standard features including mean,
2nd moment, variance, standard deviation, and 2 dimensional Discrete Cosine Transform
(DCT). We also experimented with histogram features and Gabor features, but they weren’t
used in our final system.

Two dimensional DCT on an 8x8 region produces an 8x8 DCT matrix; the features “dct01-
04” each represent the mean of a 2 pixel wide band of this matrix, each representing progres-
sively higher frequency information. The Color Co-occurrence Matrix (CCM) were taken
over either hue, saturation, or intensity channel, are 16x16, and use an offset of (0, 1).

In addition to standard textures, which colors occur together is particularly important for
classifying foods. In light of this we applied these texture features over each of the H, S,
and I channels, in the manner of the food recognition scheme of [32].

In order to reduce the dimensionality of the feature space, some feature removal or dimen-
sionality reduction scheme is required. We used feature ranking to remove less discriminative
features. We experimented with perturbation analysis, with a method similar to but less
sophisticated than [209], the idea being to make small perturbation in the classifier inputs
and see how much the outputs are affected. Presumably, inputs that don’t affect the out-
puts much are less significant and can be removed. But in practice it didn’t seem to give
good results, many weak but collectively valuable features tended to get ignored, so we used
another method.

The features were ranked with an absolute value two-sample t-test with pooled variance
estimate (Student’s t-test) [44, 110, 172] (via the default option of the MatLab rankfeatures
command). The t-test measures the likelihood that 2 distributions are distinct. For our
purposes, these distributions are the distributions of some feature of interest for 2 different
food types. Pooled variance makes the simplifying assumption that the variance of the 2
distributions is the same. The significance of the difference between the distributions is

Robert J. DiBiano Chapter 4. Food Image Analysis 69

 Feature Description Quality

1 H_CCM_sosvh Hue CCM sum of squares: variance 153.317

2 H_mean Hue mean 126.2723

3 H_CCM_mean Hue CCM mean 123.5519

4 H_CCM_savgh Hue CCM sum average 123.5105

5 H_CCM_svarh Hue CCM sum variance 123.4424

6 H_CCM_autoc Hue CCM autocorrelation 113.6674

7 I_CCM_mean Intensity CCM mean 37.5593

8 I_mean Intensity mean 37.3651

9 I_variance Intensity variance 37.1314

10 I_2nd_moment Intensity 2
nd

 moment 37.1314

11 S_CCM_2nd_moment Saturation CCM 2
nd

 moment 37.0023

12 I_CCM_covariance Intensity CCM covariance 36.2997

13 I_std Intensity local standard deviation 35.001

14 H_std Hue local standard deviation 34.1799

15 dct_01 Discrete cosine transform 01 33.5224

16 I_CCM_2nd_moment Intensity CCM 2
nd

 moment 32.8855

17 S_CCM_mean Saturation CCM mean 28.7689

18 S_mean Saturation mean 28.6047

Table 4.1: Final feature list.

measured by the t-statistic:

t =
X̄1 − X̄2

σP ·
√

1
n1

+ 1
n2

(4.21)

where X1 and X2 are the feature distributions for the 2 food classes, n1 and n2 are the
sample sizes, and σ2

P is the pooled variance:

σP =

√
(n1 − 1)σ2

X1
+ (n2 − 1)σ2

X2

n1 + n2 − 2
(4.22)

The same data from the training set was used for the t test. Fig. 4.9 shows the initial
feature rankings. Each food had a separate classifier with a feature quality for each feature.
The maximum quality of each feature across all foods was used, on the assumption that
some features might be well suited to only a few foods. This method gave more meaningful
rankings than perturbation and improved the Mean Squared Error (MSE) from .035 to .030
over basic HSI plus local std. The final feature list is shown in Table 4.1.

Database

Food regions are selected from a reference database automatically by plate detection and
segmentation discussed in sections 4.3.1 and 4.3.2, and verified manually. We used existing
databases generated for the FIRSSt and ASA24 studies [11]. These databases have one food
type per plate and known distance, angle, and lighting conditions, among other things, so
in this case automatic segmentation is greatly simplified. After the food region is detected,

Robert J. DiBiano Chapter 4. Food Image Analysis 70

0 20 40 60 80 100 120 140 160

dct_01

dct_02

dct_03

dct_04

H_2nd_moment

H_CCM_2nd_moment

H_CCM_autoc

H_CCM_contr

H_CCM_covariance

H_CCM_cprom

H_CCM_cshad

H_CCM_denth

H_CCM_dissi

H_CCM_dvarh

H_CCM_energ

H_CCM_entro

H_CCM_homom

H_CCM_idmnc

H_CCM_indnc

H_CCM_inf1h

H_CCM_inf2h

H_CCM_maxpr

H_CCM_mean

H_CCM_savgh

H_CCM_senth

H_CCM_sosvh

H_CCM_svarh

H_mean

H_std

H_variance

I_2nd_moment

I_CCM_2nd_moment

I_CCM_covariance

I_CCM_mean

I_mean

I_std

I_variance

S_2nd_moment

S_CCM_2nd_moment

S_CCM_covariance

S_CCM_mean

S_mean

S_std

S_variance

Feature Rankings (t-test)

Figure 4.9: Feature rankings.

Robert J. DiBiano Chapter 4. Food Image Analysis 71

the user can verify and classify the region. Combining this region with orientation infor-
mation gives visible surface area, and combining that with the number of grams can be
used to establish a relation between surface area and mass. The training databases we used
contain spreadsheets including mass measurements, so the class and mass lookups could be
automated.

Optional Re-Segmentation

In the case of automatic segmentation the initial regions can be cleaned up with the aid of
classification results. Adjacent or overlapping segments can be merged based on size and
similarity. Small, scattered, or otherwise invalid segments can be removed. We did this
successfully for around 30 classes, but as discussed in section 4.3.2 our segmentation by
classification method did not scale to large numbers of classes.

It is worth noting that a region merge would force re-classification for the new bigger regions.
Fortunately in the case of our algorithm that simply means summing the final vote tallies
for each of the sub-regions, which are readily available with no additional processing.

4.3.4 Volume Estimation

We estimate food volume by estimating surface area, then finding a correlation between
surface area and volume for each food type. Our results and others [180] show that surface
area is well correlated with volume for many foods. Its accuracy is slightly lower than that
of human analysts [45], but not much, and it requires a minimum of equipment and user
interaction.

Several assumptions simplify the surface area estimation. Firstly, both the plate and the
reference card lie flat on the same plane, i.e., the table. Secondly, most foods lie fairly flat
on a plate. Third, the reference card is around the same distance from the camera as the
plate. Finally, most food photos are taken from above the image at an angle of 45 degrees
or more, and depth does not vary much between the front and back of the plate.

Originally, we tried to analyze the images by the direct approach using camera parameters
(sensor geometry, focal length) to convert 2d coordinates to 3d and thereby calculate food
size. Unfortunately focal length varies by camera, and is not always easy to look up. Our
experience showed that reported focal length, either from spec sheets or metadata may vary
significantly from actual focal length, and that it changes slightly as camera is focused. The
numbers are probably intended to generate rules of thumb, and are not accurate enough for
fine calculations. Fortunately there is a way to bypass camera parameters via combining
multiple geometric transformations and making some assumptions.

Geometric transformations can be used to convert from one set of coordinates to another;
allowing us to calculate the original spatial coordinates from image coordinates, or convert

Robert J. DiBiano Chapter 4. Food Image Analysis 72

between different viewpoints. For a camera directly above a flat plane (table), pixel coor-
dinates ⟨ximg top, yimg top⟩ as a function of spatial coordinates ⟨xtop, ytop, ztop⟩ relative to the
camera are:

ximg top = c · xtop

ztop
(4.23)

yimg top = c · ytop
ztop

(4.24)

Here, c is a scaling constant dependent on camera focal length and image scale. On flat
tabletop from above, ztop is constant as well.

If the camera is not directly above the table, but rather held by someone standing in front of
the table at some angle θ, the 3d coordinates of objects on the table relative to the camera’s
true position can be found by applying the 3x3 rotation matrix:

Rx(θ) =

[1 0 0
0 cos θ − sin θ
0 sinθ cos θ

]
(4.25)

to give:

xtop = xcam (4.26)

ytop = ycam cos θ − zcam sin θ (4.27)

ztop = zcam cos θ − ycam sin θ (4.28)

The image coordinates associated with the camera’s true position are:

ximg = c · xcam

zcam
1
c
ximgzcam = xcam

(4.29)

yimg = c · ycam
zcam

1
c
yimgzcam = ycam

(4.30)

We can combine these equations to derive the perspective transform:

ximg top = c · xcam

zcam cos θ − ycam sin θ
= c ·

1
c
ximgzcam

zcam cos θ − 1
c
yimgzcam sin θ

=
ximg

cos θ − 1
c
yimg sin θ

(4.31)

Robert J. DiBiano Chapter 4. Food Image Analysis 73

Figure 4.10: left: raw image, middle: perspective transform, right: standard with known
weight

yimg top = c · ycam cos θ − zcam sin θ

zcam cos θ − ycam sin θ
= c ·

1
c
yimgzcam cos θ − zcam sin θ

zcam cos θ − 1
c
yimgzcam sin θ

=
yimg cos θ − c · sin θ
cos θ − 1

c
yimg sin θ

(4.32)

This shows that if we can measure the scale and angle of rotation, we can calculate the
pixel coordinates on the top view image without any information on camera parameters or
depth. Furthermore, on a flat table where ztop is constant, the x, y distances on the image
are directly proportional to the actual x, y, z distances in space. So with a reference card
or known plate we can estimate scale and rotation objects flat on the table accurately. The
results of a perspective transform are shown in Fig. 4.10.

We found that in practice there were several problems with this. Firstly, ztop varied mean-
ingfully between the tabletop or plate and the top of some foods. Second, minor errors in
corner locations are compounded farther away from the reference card. This can be seen in
Fig. 4.10. As a practical matter we used a simplification - the affine transformation, in 2d:

[x′

y′

1

]
=

[a11 a12 a13
a21 a22 a23
0 0 1

][x
y
1

]
(4.33)

which accounts for the differences in scale in the x and y directions due to rotation, but ig-
nores differences in depth. As shown in Fig. 4.11, this is more robust against small differences
in depth and errors in card detection. Equation 4.33 shows that the 2d affine transformation
has 6 degrees of freedom, so it requires a minimum of 3 ⟨x, y⟩ control points to specify. Since
we have 4 card corners, this is an overdetermined system, and in an affine transformation the
edges of the card will not be parallel afterwards. So we set the parameters to minimize the
error between all 4 card corners and the card corners of the ideal “correct” rectangular card
with the correct height, width and orientation. This method ignores scale variations due to
different depth but in practice gives good, stable results for our problem; even in the best
cases for perspective transform, affine transform gave indistinguishably accurate results.

Robert J. DiBiano Chapter 4. Food Image Analysis 74

Figure 4.11: left: raw image, middle: affine transform, right: standard with known weight

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40

M
a

ss
 i

n
 g

ra
m

s

Area in square inches

Baked Beans

0

50

100

150

200

250

300

0 10 20 30 40 50

M
a

ss
 i

n
 g

ra
m

s

Area in square inches

Carrot(slices)

Figure 4.12: Volume estimation on solid foods.

Next, mass is estimated from surface area using the known masses of training samples. This
makes the assumption that mass is linearly related to volume i.e., the average density of a
food type is always the same. Presently the mass per surface area kfood is calculated for each
training sample and these values are averaged to estimate the relation (Eq. 4.34). Testing
showed that most foods, when scooped or placed onto a flat plate, tend to have a strong linear
relationship between mass and surface area, as shown in Fig. 4.12. As shown in Table 4.2,
22 food types were tested, with a mean error of around 15%, varying significantly by food
type. Fig 4.13 and Fig. 4.14 show linearity graphs for the best and worst cases tested.

mass = kfood × surface area (4.34)

For liquids in opaque cups and soup in bowls there is also a linear relationship between volume
and surface area, or at worst a very simple curve. In this case though, the relationship
depends on the properties of the container rather than those of the food, so in this case
kfood becomes kcontainer. Fig. 4.15 shows this phenomenon, it’s easy to pick out the curves
associated with 2 different bowls across several food types. So for these food types, volume
estimation would only be viable with standardized containers, for example in a cafeteria
setting.

Robert J. DiBiano Chapter 4. Food Image Analysis 75

Table 4.2: Volume estimation results.

0

20

40

60

80

100

120

0 10 20 30 40

M
a

ss
 i

n
 g

ra
m

s

Area in square inches

Rice: mean error 7.11%

Figure 4.13: Best linearity.

Ranking Percentile Percentage of Foods

First Place 100 76%(84/110)

Top 3 98+ 92%(101/110)

Top 5 96+ 95%(105/110)

Table 4.3: Classification results.

Robert J. DiBiano Chapter 4. Food Image Analysis 76

0

20

40

60

80

100

120

0 10 20 30

Sweet Peas: mean error 25.23%

Figure 4.14: Worst linearity.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50 60

V
o

lu
m

e

Area in square inches

2 Bowls

Baked Beans

Queso

Salsa

Tomato Soup

Chicken Noodle(Clear)

Figure 4.15: Volume estimation on liquid foods. The two different curves for bowl A and B
are clearly visible

Robert J. DiBiano Chapter 4. Food Image Analysis 77

Figure 4.16: Classification results.

4.4 Results

Our training and testing sets were taken partially from the FIRST and ASA24 [11] datasets,
and partially in house at the Baylor College of Medicine Children’s Nutrition Research
Center (CNRC). With such a large number of classes, many of which were similar, nearly
indistinguishable or even legitimately overlapping, the best way to report and compare the
results seemed to be percentile scores, what percentile of results the correct food was in
(Table 4.3, Figs 4.16 and 4.17).

Overall, our classification results (92% correct within 98th percentile, 110 foods), were good
compared to those of comparable to those of previously/concurrently published food recog-
nition systems such as [83] (80.05% correct within the 96th percentile, 50 foods), and their
follow up work in [95] (81.55% within 92nd percentile, 50 foods). Many other systems were
not comparable because they didn’t work on, and were not designed for, large numbers of
foods; we aren’t aware of any systems that work on more than 30 food types.

The next year, [83] further extended their work [95] to include 100 food types, and achieve a
recognition rate of 92% within 96th percentile. Their revised system made use of the newly
popular Convolutional Neural Network (CNN), which would soon come to dominate high
powered (as opposed to high speed) image recognition, and has some application in texture
analysis as well. There were other CNN methods at the time [87], but they still didn’t
provide a list of runners up, and were not applicable to large numbers of classes.

4.5 Discussion

Practical implementation of the system gave us a number of insights into the unique problems
of food recognition. Upon examining our main sources of error, we found a number of food
types in our database raised interesting and unforeseen classification issues. We noticed

Robert J. DiBiano Chapter 4. Food Image Analysis 78

Figure 4.17: Detailed testing results.

Robert J. DiBiano Chapter 4. Food Image Analysis 79

Figure 4.18: Lighting differences.

other issues that would be difficult for other classifications methods were inherently easy for
our OVTR, and it may have other useful features we can take advantage of.

4.5.1 Main sources of error

The Primary sources of error for OVTR in this dataset seem to be residual lighting differences
between the 2 subsets (Fig. 4.18), and cases where the appearance of the training and testing
set are different due to several possible ‘types’ among the same food. The first case can
be mitigated by implementing better lighting normalization; the second requires training
samples from each type.

4.5.2 Interesting Cases

A common special case is that of multimodal food, where a food has 2 or more colors/textures
throughout, or has distinct regions of different colors/textures. Our classifier performed well
on these types of foods. Some examples of multimodal foods are show in Fig. 4.19.

In a large food database, there will be many types of very similar looking foods, for example
even in our relatively small training sample there were 3 types of steak, 4 types of chocolate
bars, chocolate cake and chocolate brownie. All of these are basically the same color, and
within each group even the texture was often essentially the same.

Robert J. DiBiano Chapter 4. Food Image Analysis 80

Figure 4.19: Multimode foods.

Figure 4.20: Multiple types/textures (top left: oatmeal, top right: garlic toast, bottom left:
cream of wheat.

Furthermore, in practice an image can legitimately match with multiple classes. If there’s
a database entry for ‘chocolate’ and a separate entry for ‘Hershey chocolate bar’, one is a
subclass of the other and equally legitimate for a match. It can be concluded then, that for
real world data, a ranked list of results is needed, rather than a single classification.

Another interesting case is foods where two examples of the same food can look very dif-
ferent. For example lumpy vs smooth oatmeal, lasagna with different cheese-to-sauce ratio
or physical layout than the training sample, or new vs old bananas. For our system, this
is similar the multimodal case mentioned above; however this type is impervious to global
features, and the training set must include examples of each type for ideal results. A few
examples of this are shown in Fig. 4.20. In our results for these cases, both ‘types’ were not
included in the training set.

Robert J. DiBiano Chapter 4. Food Image Analysis 81

4.5.3 “One versus the rest” advantages and features

Using individual specialist networks for each food makes this system parallelizable. His-
togram comparison also is more workable in this case because it generates only one training
feature for each network. Having a one element target vector reduces stress on computer
memory and processing time. The specialist networks stress positive classification, prefer-
ring false positives over false negatives; so each network should have the maximum chance
to detect its assigned food type. The voting scheme has several novel advantages. Firstly it
handles multimode foods well, since if a food is composed of 2 adjacent regions, the votes
for both types of regions will be positive. Even a small “crust” that takes up 5-10% of the
image will effectively break ties without needing to do a very detailed global analysis of the
types and amount of different modes. Foods with multiple “types” such as green, yellow,
and brown bananas are seamlessly handled as well. Secondly, with hundreds or thousands
of food types, correct classification is not viable in every place, so any classification method
needs to return a sorted list of results; voting achieves this far more effectively than directly
using a neural net to classify.

For any classifier trying to discriminate between several similar food types, naturally any
distance measures in the contested region are liable to be inflated. This runs counter to our
goal of creating a sorted list based on absolute quality of the match against each training
food. So from this standpoint multiple binary classifications are preferable as well.

Chapter 5

An Agile Framework For Real-Time
Visual Tracking in Videos

5.1 Introduction

Automated tracking of moving objects in a video in real time is important for different
applications such as video surveillance, activity recognition, etc. Existing visual tracking
algorithms [61, 89, 100, 103] cannot automatically adapt to changes in lighting conditions,
background, types of sensors (e.g., electro-optic vs. infrared) and their dynamics (zooming,
panning, etc.) easily. They cannot gracefully handle data that simultaneously contains
different types of motions such as both slow and fast moving objects, motion behind an
occlusion, etc. Many of the existing tracking algorithms [61, 89, 100, 103] cannot start the
tracking process automatically; they require a user to draw a box on an object that needs
to be tracked for the process to be initiated.

We present an agile framework for automated tracking of moving objects in full motion video
(FMV). The framework is robust, being able to track multiple foreground objects of different
types (e.g., person, vehicle) having disparate motion characteristics (like speed, uniformity)
simultaneously in real time under changing lighting conditions, background, and disparate
dynamics of the camera. It is able to start tracks automatically based on a spatio-temporal
filtering algorithm and is able to gracefully handle objects in occluded surroundings. Un-
like many existing tracking algorithms [89], with high likelihood, it does not lose or switch
tracks while following multiple similar closely-spaced objects. The framework is based on
an ensemble of tracking algorithms that are switched automatically for optimal performance
based on a performance measure without losing state. Only one of the algorithms that has
the best performance in a particular state is active at any time, providing computational
advantages over existing ensemble frameworks like boosting. We prove theoretically (lem-
mas 1 and 2) that the presented agile tracking framework is more accurate than existing

82

Robert J. DiBiano Chapter 5. Agile Framework 83

individual/ensemble-based algorithms. A C++ implementation of the framework (for the
purposes of this chapter, we only consider two algorithms in our ensemble: Gaussian Mixture
Background Subtraction (GM) and optical flow) has outperformed existing visual tracking
algorithms on most videos in the Video Image Retrieval and Analysis Tool [178] (/acrshort-
virat: www.viratdata.org) and the Tracking Learning Detection (TLD) [89] data-sets.

5.2 Contributions

The tracker makes several contributions. Firstly, our agile tracker provides a domain specific
solution applicable to car and human tracking both in poor quality aerial videos and good
quality surveillance videos. Although intended to be part of a larger system, it is designed to
be a complete tracking system suitable for practical stand alone application in the specified
domain. In contrast to similar surveillance trackers, our tracker uses multiple main tracking
engine types and can switch among them when performance drops. Secondly, the agile
framework provides a novel method of merging multiple trackers to produce better results
than any individual in the ensemble, by allowing each tracker to run in the situations it is
most applicable to. This relies on an estimate of tracker applicability that the agile framework
generates from various video and object metrics. Our agile tracker was published at a
workshop in the 39th Annual International Computers, Software & Applications Conference
(COMPSAC) [20].

5.3 Related Work

A spatio-temporal tracking algorithm was proposed in [103] that involved tracking articulated
objects in image sequences through self-occlusions and changes in viewpoint. However, they
did not provide capabilities of automatic track starting or tracking multiple objects. The
work in [100] combines background subtraction, feature tracking, and grouping algorithms.
However, their work didn’t have any suitable classification method based on the spatial
features of the objects detected. A Kernel Particle Filter (KPF) was introduced in [37] for
tracking for objects in image sequences. The idea proposed in [187] shows tracking using
a single classification SVM. A boosting-based approach was proposed in [177] that used a
cascade of classifiers for object detection. However, it didn’t address the problem of tracking
objects through consecutive frames of a video sequence.

Among the existing tracking frameworks the one most relevant to our work is the TLD
algorithm proposed in [89]. This algorithm is far more general and robust compared to most
other trackers and deals with drift well. The main problem inherent in this algorithm is
its inability to start tracks automatically as well as lacking a multi-object tracking feature.
Also, TLD is based on template matching and hence fails for videos with multiple numbers
of similar looking objects.

Robert J. DiBiano Chapter 5. Agile Framework 84

Figure 5.1: Schematic representation of our approach.

5.4 The Proposed Approach

Figure 5.1 shows the schematic of our approach. First, a moving object must be automati-
cally identified as part of the foreground. This involves starting tracks at particular pixels on
the subsequent frames that have a higher probability of being part of the moving foreground
object. This is achieved by 1) stabilizing the image and 2) feeding the stabilized image to the
spatial and temporal filtering algorithms described below. Once the track starter algorithm
has precisely marked the object coordinates, the objects must be tracked if any motion is to
be identified. Issues such as camera instability (shaking, panning, rotating) come into play
and require image stabilization for the tracking to be successful.

5.4.1 Image Stabilization

An incoming video is first stabilized using an iterative algorithm:

1. Apply Shi and Tomasi’s edge-finding algorithm to the first frame to identify significant
feature points in the image.

2. For each subsequent frame, apply Lucas-Kanade optical flow to track the motion of the
features identified by Shi and Tomasi’s algorithm, refreshing the feature points when
necessary.

3. With increasing precision for each iteration:

(a) For each angle of rotation in a certain range, determine the translation of each
point.

(b) Find the most common (mode) translation/rotation pair (Θ, x) and (Θ, y) of all
the features.

4. Warp the image to adjust for the total mode of the motion.

At present, our method stabilizes the image for small amounts of translational and rotational
camera movement. Thus, for wide camera sweeps or changes in perspective or scale, our
stabilization method is not, at present, appropriate.

Robert J. DiBiano Chapter 5. Agile Framework 85

5.4.2 Track Starting

The automated track starting algorithm based on a confidence-based spatio-temporal filter-
ing algorithm first detects blobs using the GM Background Subtraction method [86]. This
yields difference images, which are fed into the spatial filtering module below.

The data structure prob obj represents the blob picked out by the initial spatio-temporal
filtering as a possible object of interest. It is a group of pixels, and also has a height, width,
and confidence measure δ associated with it.

1) Opening or Closing images of Images via Image Morphing

The image obtained through the background subtraction algorithm is initially opened by a
structuring element with diameter 3 pixels to filter out unnecessary noise. By opening, we
mean the dilation of the erosion of a set A by a structuring element B. Then it is closed with
k-means clustering [52]. This helps in detecting blobs over subsequent frames.

2) Spatial Filtering

Once blobs are detected in the difference images, they are filtered according to their spa-
tial features. The pseudo code for the spatial filtering algorithm is provided below. Scale
information available from the metadata accompanying the videos is used to filter blobs
specifically based on their area and orientation. The filtered blobs are then passed as input
to the temporal filtering algorithm below.

3) Temporal Filtering

To filter blobs in the temporal domain we use a confidence measure. Each blob has a
confidence measure δ associated with it.

Initially the confidence value for each blob is zero. Confidence value for a blob increases
as it is detected across successive frames In case a blob appears in consecutive frames, the
confidence value increases according to a prior confidence measure. The confidence update
equation is as follows:

Equation for confidence gain:
δ = 0.5−n (5.1)

Equation for confidence loss:
δ = −0.5−n (5.2)

where n is the frame number.

Robert J. DiBiano Chapter 5. Agile Framework 86

Figure 5.2: Confidence value update for the frames (for increasing confidence)

The composite confidence update equation is as follows:

δ = 0.5−n ∨ −0.5−n (5.3)

So, the confidence update equation takes the form portrayed in figure 5.2.

4) Adaptive Thresholding

If the confidence value for a blob exceeds a specified upper threshold σ, a track is started on
it. The moment the confidence value for a blob falls beneath a lower threshold τ , the corre-
sponding object is discarded. If the confidence value is between σ and τ , the corresponding
blob is maintained in the list of prospective tracks. If the confidence measure increases to a
value higher than the upper threshold σ, then a track is started at the pixel representing the
object coordinates. For videos that have higher noise, clutter and random changes in lighting
conditions, as is often the case for outdoor videos taken from moving cameras, the upper
threshold value σ is set higher. On the other hand, for videos with more stable conditions σ
is set lower because of the lesser probability of encountering random classification noise.

5.4.3 The Agile Tracking Framework

Object tracking is a matter of determining the apparent motion of the target object, keeping
track of its pixel coordinates. Many object tracking methods are based on optical flow, or
use it as a subpart. Existing methods like Kalman Filter [61] based on a Bayesian model
and TLD [103] based on Template Matching primarily use a single learner to perform the
underlying computations. In the field of machine learning, ensemble methods consist of a
collection of models that can be used to improve the classification accuracy as compared
to any of the individual models [138, 143, 147]. The No Free Lunch (NFL) theorem of
Wolpert [191] states that all learners have the same average performance across all problem
classes. It follows that a learning algorithm can produce better than average results on some

Robert J. DiBiano Chapter 5. Agile Framework 87

Algorithm 5 The Track Starting Algorithm

procedure trackstarting
img ← getFrame(video);
img ← STABILIZE IMAGE(img);
bw img ← GM BACKGROUND SUBTRACTION(img);
sl ← create structuring element(3); ◃ 3 is the diameter of the structuring element
img ← PERFORM OPEN ON IMAGE(bw img,sl);◃ morphological opening on image
sl ← create structuring element(n); ◃ n is chosen adaptively acc. to the image
img ← PERFORM CLOSE ON IMAGE(img,sl); ◃ morphological closing on image
contour img ← FIND CONTOUR(img); ◃ finds the boundaries on the image
count = 0;
while (contour != NULL) do

prob obj ← GET OBJ FROM CONTOUR(contour img); ◃ probable object blob
count ← count + 1;

end while
for i = 0 to count do

temp ← SPATIAL FILTERING(prob obj);
end for
while (temp != NULL) do

obj ← TEMPORAL FILTERING(temp);
end while

end procedure

Algorithm 6 The Track Starting Algorithm - Spatial Filtering

function SPATIAL FILTERING(prob obj)
if (prob obj.size < τ1 AND prob obj.size > τ2

AND prob obj.height
prob obj.width

< τ3 AND prob obj.height
prob obj.width

> τ4) then
◃ τ1 ,τ2 ,τ3 and τ4 indicate the respective thresholds

return prob obj;
else

return NULL;
end if

end function

Robert J. DiBiano Chapter 5. Agile Framework 88

Algorithm 7 The Track Starting Algorithm - Temporal Filtering

function TEMPORAL FILTERING(temp)
for each prob obj do

δprob obj ← 0; ◃ init. weight of each object detected as 0.
end for
if (for video.nextframe) obj detected = prob obj then

δprob obj ← δprob obj + (0.5)−n; ◃ confidence update equations
else

δprob obj ← δprob obj − (0.5)−n;
end if
if δprob obj ≤ τ then

remove prob obj from list of objects;
else ◃ append to the list of objects detected. Φ represents the append operator

obj ← obj Φ prob obj;
end if
for each obj do

if δprob obj ≥ σ then
start tracks on obj(x,y); ◃ start tracks on object centroids (x,y)

end if
end for
return obj;

end function

Robert J. DiBiano Chapter 5. Agile Framework 89

problem classes, always at the cost of producing worse than average results on all other
classes. This result was one of the motivations behind the advent of boosting algorithms,
which combine multiple weak learners into a stronger one. In a similar manner, if we can
estimate the error rate of a given tracker in a given situation, an ensemble of trackers can
perform better than any individual.

It can be shown through the following lemma that an ensemble learner performs better than
any of the constituent learners.

Lemma 5.4.1 Even a strong learner cannot endure situational variances, i.e., it cannot
perform well at all situations.

Proof The Boosting algorithm [156] described by Schapire and subsequently proposed im-
plementations like Adaboost use Convex Potential Boosters. As shown in [113], for a wide
range of convex potential functions, any boosting algorithm is bound to encounter random
classification noise. They show that any such boosting algorithm is able to classify examples
correctly in absence of noise but in the presence of noise the learner cannot learn to an ac-
curacy better than 1/2. This holds even if the boosting algorithm stops early or the voting
weights are bounded.

Consider two sets of disjoint concept classes C1 and C2 such that C1 Λ C2 = ∅. Now, if we
consider an instance space X containing elements from C1, then any c ∈ C2 can be classified
as random noise in X. So, effectively at least two different learners L1 and L2 are needed for
classifying the instances in X according to C1 and C2.

In the light of this pre-defined notion, we present a new agile learning based tracker, that uses
a combination of two methods for computing position: Gaussian Mixture (GM) background
subtraction [86] for quick-moving and the Lucas-Kanade method for slow-moving [114] ob-
jects in order to account both for fast and slow velocities. By the agile learning based tracker,
we imply that our tracker can adaptively switch between the constituent learners at runtime
based on the video and object properties.

We present a new agile tracking framework that uses an ensemble of k individual trackers.
The framework allows adaptive switching between the constituent trackers dynamically based
on a performance measure. The algorithm for adaptive switching is described below.

The switching module is called by the agile tracking algorithm.

In the above algorithm, state refers to the set of tuples (x,y,n,I), where x and y are the pixel
coordinates, n is the frame number and I is the intensity. The agile tracker calls the switching
algorithm at a user specified frequency. The switching algorithm computes the performance
measure at the current state. If it exceeds a threshold the current tracker is substituted
with a new one obtained from an ensemble through a pre-defined policy in such a way that
the application of the new tracker to the current state results in one whose performance

Robert J. DiBiano Chapter 5. Agile Framework 90

Algorithm 8 The Switching Algorithm

procedure switch
j ← 1;
active tracker ← Tj ◃ Tj is the jth tracker compute the performance measure λ
if λ ≥ threshold Φ then

CHECKPOINT CURRENT STATE(); ◃ saves the current state
active tracker ← CALL TRACKER SELECTOR(); ◃ calls a new tracker
state ← GET CHECKPOINTED STATE(); ◃ returns the checkpointed state
state ← active tracker(state);

else
continue;

end if
if performance measure λ is minimized then

i ← i+1
end if

end procedure

Algorithm 9 The Tracking Algorithm

procedure AGILE TRACKER(freq)
for each frame i do

if frame number % freq = 0 then
call SWITCH()

end if
end for

end procedure

Robert J. DiBiano Chapter 5. Agile Framework 91

measure value is below the threshold. While switching, the current state is checkpointed so
that it can be accessed by the new tracker. We use the linear function given below as the
performance measure.

P = k1 × stabilization error + k2 × track overlap amount + k3 × probability jump detected
+k4 × probability drift detected + k5 × track speed

(5.4)

where k1, k2, . . . , k5 are constants whose sum is 1 and whose values depend on the constituent
trackers in the ensemble. The performance measure quantifies the tracking error at the
current state.

The next lemma shows that dynamic switching between individual trackers yields more
accurate results.

Lemma 5.4.2 Switching between individual trackers dynamically can decrease the upper
bound for error up to a certain pre-defined value.

Proof Suppose c(v) is the correct classification for v and h1(v), h2(v) etc. are the classifi-
cations produced by the trackers T1, T2, etc respectively. h(v) is the estimate produced by
the effective composite tracker T.

Here, T = T1∆T2∆ . . .∆Tn, where, T1, T2, etc indicates the trackers and ∆ indicates the
switch operator on the trackers.

Also, let a1, a2, etc be the respective probabilities of error or misclassification Also, for switch-
ing between trackers dynamically at runtime we incorporate the idea of defining adaptive
thresholds τ 1, τ 2 etc. So, we define the set τ = {τ1, τ2, τ3, τ4, τ5, . . . , τn} as the threshold for
the number of misclassifications. If the number of misclassifications for a particular tracker
Ti exceeds the corresponding threshold τi we switch the learner.

Suppose for the ith tracker, the number of misclassifications become (τi+1) at the (ni+1)th

instance. So, up to the nth
i instance, probability of error or misclassification is

Pr(h(v) ̸= c(v)) =

((ni

τi

)
ni!

)
× aτii (5.5)

Also, let
,
α
‘
be the upper bound of error on any of the individual trackers. Hence, for the

total tracking process, the composite probability of misclassification is given by

Robert J. DiBiano Chapter 5. Agile Framework 92

Pr(h(v) ̸= c(v)) = Pr((h1(v) ̸= c(v))Λ(h2(v) ̸= c(v))Λ . . .Λ(hn(v) ̸= c(v)))

=

(
(n1
τ1
)

n1!

)
× aτ11 ×

(
(n2
τ2
)

n2!

)
× aτ22 ×

(
(n3
τ3
)

n3!

)
× aτ33 × · · · ×

(
(nN
τN
)

nN !

)
× aτNN

≤
(
(n1
τ1
)

n1!

)
× ,

α
‘

τ1 ×
(
(n2
τ2
)

n2!

)
× ,
α
‘

τ2 ×
(
(n3
τ3
)

n3!

)
× ,
α
‘

τ3 × · · · ×
(
(nN
τN
)

nN !

)
× ,

α
‘

τN

[Since, for all i, ai ≤
,
α
‘
]

=

(
(n1
τ1
)

n1!

)(
(n2
τ2
)

n2!

)(
(n3
τ3
)

n3!

)
. . .

(
(nN
τN
)

nN !

)
,
α
‘

(τ1+τ2+τ3+···+τN) ≤ ,
α
‘

(5.6)

Here, N is the number of switches performed at runtime.

Observations:

1. Inequality (5.6) holds because each of the terms

(
(ni
τi
)

ni!

)
≤ 1 as well as

,
α
‘

(τ1+τ2+τ3+···+τN) ≤
,
α
‘
, since,

,
α
‘
≤ 1.

2. So, the overall upper bound for the error of the composite tracker is reduced owing to
switching at runtime.

3. Inequality (5.6) proves that the effective composite error bound of the agile tracker T
is less than any of the individual trackers Ti.

1, 2 and 3 justify our argument that using switching reduces the overall error bound.

Threshold value selection is a very important criterion in optimizing the agile tracker. In
order to evaluate the threshold selection criteria, let us concentrate on the simplified version
of the equation presented in (5.6).

So, we have classification error

Pr(h(v) ̸= c(v)) ≤
N∏
i=1

((ni

τi

)
ni!

)
,
α
‘

τi =

(
1

τ1!(ni − τi)!

)
,
α
‘

τi (5.7)

The error bound can be minimized by increasing τi until τi = ⌈ni/2⌉.

In a typical video scenario, most features are stationary from frame to frame with only a few
objects moving. The stationary features are considered to be in the background, and the
moving objects are foreground. The GM background subtraction method described in [86]
efficiently segments foreground and background objects in real time, allowing for effective
object tracking. However, as is typical of background segmentation methods, it becomes
less effective when there is camera instability. Even with a stable camera, this method

Robert J. DiBiano Chapter 5. Agile Framework 93

tends to lose foreground objects if there is relatively small movement in the foreground. To
compensate for these deficiencies, we also use a more traditional and robust optical flow
method for object tracking.

The Lucas-Kanade method, like many algorithms used to compute optical flow, imposes a
constraint on the optical flow problem: the displacement (δx, δy) of the image intensity from
a pixel (x, y) to a pixel (x + δx, y + δy) in the subsequent frame is small and constant over
time. That is, it must satisfy for all pixels p the equation:

Ix (p)Vx + Iy (p)Vx = −It (p) (5.8)

where Ix, Iy and It are the partial derivatives of the image intensity with respect to x, y and
t, and Vx and Vy are the velocity vectors. This usually results in an over-determined system
and uses least-squares to find a solution. Due to the constraint imposed by the method, it
is best suited for a object moving slowly with constant velocity. We use pyramidal Lucas-
Kanade. That is, we compute Lucas-Kanade at the lowest-resolution image I0; then, having
obtained this lower-resolution result, we compute Lucas-Kanade incrementally for the next
lowest resolution I1. Similarly, we obtain I2 from I1, and so forth until reaching the full
resolution.

Combined, the Lucas-Kanade method and GM background tracking ensure motion-tracking
performance superior that of either method used alone.

When used on Unmanned Aerial Vehicle (UAV) videos, object tracking presents an array
of challenges. One is camera instability; often, during recording, the camera shakes, pans,
or rotates, which causes background objects to appear to move. A second is poor image
quality due to low-definition recording equipment or long distance; this obscures images and
interferes with the tracking process. A third is the need for real-time tracking, which requires
simple, efficient methods to keep up with the pace of real-time input.

1) Agile Tracking vs. Other Ensemble Based Trackers

A tracker based on an ensemble machine learning technique like boosting would create, based
on training data, a tracker of the form:

T =
P∑

p=1

αptp (5.9)

where P is the number of rounds, tp is a tracker in the ensemble, and αp are weights such

that
∑P

p=1 αp= 1. T is the tracking vector describing the target’s motion.

While running on actual data T will need to run all the P trackers on each data point (i.e.,
frame) and compute a weighted sum of the outputs. In our case only one tracker is active at
any particular time, i.e., only one tracker is run on each data point. This is crucial for real
time performance.

Robert J. DiBiano Chapter 5. Agile Framework 94

Moreover, in boosting, the weights αp are fixed once the training is over. This can create
problems if the character of the data changes drastically from the examples on which the
training is performed due to changes in background, lighting conditions, etc. This can be
avoided in the agile framework by having multiple boosted trackers in the ensemble and
switching them accordingly using the SWITCH() method (of course increasing the compu-
tational cost) but definitely yielding higher performance.

2) Image Quality and Real-time Tracking

How do we accommodate both poor image quality and the need for real-time tracking?
The combination of GM background subtraction and the Lucas-Kanade method ensures a
better result than either one alone; Lucas-Kanade tends to succeed where GM background
subtraction fails, and vice versa. For a blurry, low-quality, quickly-moving object, GM
background subtraction works well as long as the image is stable so that background and
foreground objects can be distinguished. If a failure, defined as a large jump or the object is
not moving quickly enough to show up in the GM background image, is detected, we track
the object’s movement according to the output of the Lucas-Kanade flow field.

Fortunately for the sake of efficiency, the incremental cost to stabilize the image is small,
since Shi and Tomasi’s algorithm need only run once and the Lucas-Kanade flow field is
already being computed to track foreground objects.

3) Object Passing One problem with GM background subtraction is when two moving
objects are nearby or occluded, it becomes difficult to separate them. Likewise, with Lucas-
Kanade, the boundaries of the tracked objects must be approximately known. To account for
this, we create a probability image when two objects are nearby, consisting of two Gaussians.
The first object cannot move to where the probability is 0 (e.g., at the center of the second
object), and likewise for the second object. This, along with preventing large jumps, usually
solves the problem with two objects passing each other in the near vicinity.

5.5 Implementation of our Approach

We implemented tracking in C++ using the OpenCV library [30] for real-time computer
vision. The ensemble in our case consisted of two individual algorithms: Gaussian Mixture
Background Subtraction and Lucas-Kanade optical flow (LK). The GM algorithm works well
at high speeds while the LK performs well at lower speeds. The parameters k1, k2, k3, and
k4 are currently equally weighted, with the exception of k5 which has been determined by
the ability of LK to obtain certain track speeds. Also the switching algorithm was called by
the agile tracker every frame.

Robert J. DiBiano Chapter 5. Agile Framework 95

Table 5.1: Comparison of the various trackers - number of frames after which the trackers
lost track for the first time

Tot. no. of frames BeyondSemi-Boost coGD CVPR MIL
Jumping 313 14 1 96 313
Car 945 28 34 29 220
Motocross 2665 6 1 59 63
Car chase 9928 66 1 334 321
Panda 3000 130 1 358 992

Table 5.2: Comparison of the various trackers - number of frames after which the trackers
lost track for the first time(contd.)

Tot. no. of frames Online Boost SemiBoost TLD Agile Tracker
Jumping 313 26 21 313 313
Car 945 545 652 802 581
Motocross 2665 15 59 173 110
Car chase 9928 316 190 244 402
Panda 3000 1004 83 277 2568

5.6 Results and Comparative Studies

We compare the results from our tracker against seven existing trackers whose outputs are
available at the publicly available TLD dataset [89]. Table 5.1 and Table 5.2 show the number
of frames after which the trackers lost track for the first time. The measure proves to be
effective in the absence of a track merging algorithm. The agile tracker performs well in most
of the cases. Fig. 5.3 shows the outputs of the agile tracker on the TLD dataset. Also TLD
is based on template matching and hence fails for videos with multiple numbers of similar
looking objects. This is illustrated in Fig. 5.4 where TLD switches tracks arbitrarily between
similar looking foreground objects whereas the agile tracker keeps tracking a particular object
for the entire time frame of its visibility. The full length tracked videos along with further
results on /acrshortvirat data are available at [3].

5.7 Conclusions

Our novel approach to track starting using confidence measure and adaptive thresholding not
only performs in real time but is also accurate. The agile tracking framework allows dynamic
switching within an ensemble of tracking algorithms based on a performance measure while
preserving state providing more accuracy than any of the individual algorithms. We believe
that the presented framework provides the foundation for real time video activity recognition.

Robert J. DiBiano Chapter 5. Agile Framework 96

Figure 5.3: Results from the agile tracker.

Figure 5.4: The left one represents the output from the agile tracker and the right one
represents that from TLD, which has trouble with nearly identical objects.

Chapter 6

MAPTrack: a Probabilistic Real Time
Tracking Framework by Integrating
Motion, Appearance and Position
Models

6.1 Introduction

Tracking moving objects in a streaming video in real time is important for many applica-
tions such as video surveillance, activity recognition, robotics, etc. A statistical method for
parametric modeling of object geometry as well as illumination changes owing to variance in
lighting conditions was proposed in [69]. However, their approach was only used particularly
in tracking human faces; no results are available for videos involving objects having different
types of motion such as vehicles, humans, etc. that interact with each other (closely) as
is often the case in surveillance videos. In [128] the authors provide a Bayesian framework
for combining information obtained about appearance and object geometry for robust visual
tracking. However, their framework cannot track multiple moving objects simultaneously;
in addition, it cannot handle occlusions.

In this chapter, we present a probabilistic real time tracking framework that combines the
motion model of an object with its appearance and position. The motion of the object is
modeled using the Gaussian Mixture Background Subtraction algorithm, the appearance, by
a color histogram and the projected location of the tracked object in the image space/frame
sequence is computed by applying a Gaussian to the Region of Interest. Our tracking frame-
work is robust to abrupt changes in lighting conditions, can follow an object through occlu-
sions, and can simultaneously track multiple moving foreground objects of different types
(e.g., vehicles, human, etc.) even when closely spaced. A spatio-temporal filtering algo-

97

Robert J. DiBiano Chapter 6. MAPTrack 98

rithm helps in automatic track initialization and a “dynamic” integration of the framework
with optical flow allows us to track videos with significant camera motion. A C++ imple-
mentation of the framework has outperformed existing visual tracking algorithms on most
videos in the Video Image Retrieval and Analysis Tool (VIRAT) [178], TUD [5], and the
Tracking-Learning-Detection [89] datasets.

6.2 Contributions

MAPTrack improves on the agile tracker by using mean shift filtering to integrate motion,
appearance, shape, and expected position into one hypothesis, providing “soft switching”
that is less threshold sensitive and accounts for multiple models simultaneously. Rather
than handle occlusion/track loss and becoming stationary in separate modules like previous
approaches, they are integrated into the soft switching equations, providing better robustness
in poor conditions. This system was published in the International Conference on Computer
Vision Theory and Applications (VISAPP) [21], and has a patent pending [129].

6.3 Related Work

A new particle filter - Kernel Particle Filter (KPF) - was proposed in the [36] for visual
tracking for multiple objects in image sequences. The idea proposed in [187] shows tracking
using a single classifier SVM. A boosting-based approach was proposed in [177] that used
a cascade of classifiers for object detection. However, it didn’t address the problem of
tracking objects through consecutive frames of a video sequence. A spatio-temporal tracking
algorithm was proposed in [103] that involved tracking articulated objects in image sequences
through self-occlusions and changes in viewpoint. However, they did not provide capabilities
for automatic track initialization or tracking multiple objects.

The TLD algorithm proposed in [89] is the basis of one of the well-known frameworks for
tracking moving objects. The TLD framework does not start tracks automatically; it lacks
a multi-object tracking feature. Also, TLD is based on template matching and hence fails
for videos with multiple numbers of similar looking objects (e.g., in the Indian driving scene
video, Fig. 6.5). The approach proposed in [115] uses color histograms as the only feature.
They use a cascade composition of a particle filter and mean shift. The method proposed
in [14] is similar to the approach proposed in TLD. The difference between the work reported
in it and TLD is that they use multiple instances as the positive examples in each frame.
However, like TLD, their framework does not start tracks automatically as marking the
location of the object initially is a prerequisite. A Bayesian estimation-based object tracking
algorithm that takes into account the motion models, shape and appearance constraints has
been proposed in [171] but it has trouble when the motion layers are infiltrated with clutter,

Robert J. DiBiano Chapter 6. MAPTrack 99

Figure 6.1: Schematic representation of our approach.

occlusion etc., another method for detecting event sequences in surveillance videos that is
applicable only to low frame rate videos is proposed in (Lombardi and Versino, 2011).

Our approach is based on using the motion model, color histogram, and position information
of objects to track them with a recursive probabilistic estimation of the composite model.
Unlike the previous approaches, it can simultaneously track multiple moving objects, does
not fail significantly when there is no motion, or when the object is occluded, is resistant to
clutter, and is also able to initialize tracks without human supervision.

Recently, there have been a lot of works that combine multi-object tracking, multi-person
tracking, and association between different tracked objects for activity recognition [137]. Our
framework tracks multiple objects in a video in each frame or multiple frames efficiently;
this capability could be used as a part of a co-related and collective activity recognition
framework.

6.4 The Proposed Approach

Figure 6.1 shows the schematic of our approach. First, a moving object must be automat-
ically identified as part of the foreground. This involves track initialization at particular
pixels on the subsequent frames that have a higher probability of being part of the moving
foreground object. This is achieved by - 1) stabilizing the image and 2) feeding the stabilized
image to the spatial and temporal filtering algorithms described below. Issues such as cam-
era instability (shaking, panning, rotating) come into play and require image stabilization
for the tracking. These issues and the components of the tracking framework are described
in detail below.

Robert J. DiBiano Chapter 6. MAPTrack 100

6.4.1 Image Stabilization

In order to stabilize an incoming streaming video, we use an iterative algorithm which at-
tempts to hold each background pixel in the same position regardless of lateral and rotational
camera motion.

1. Apply Shi and Tomasi’s edge-finding algorithm to the first frame to identify significant
feature points in the image.

2. For each subsequent frame, apply Lucas-Kanade optical flow to track the motion of
the features identified by Shi and Tomasi’s algorithm, refreshing the feature points when
necessary.

3. With increasing precision for each iteration:

(a) For each angle of rotation in a certain range, determine the translation of each point.

(b) Find the most common translation/rotation (mode) pair (?, x) and (?, y) of all the
features.

4. Warp the image to adjust for the total mode of the motion.

Before adjusting for background motion, we must identify features of the frame; to do so, we
use the Shi-Tomasi method [157]. The Shi-Tomasi method detects features such as corners
and edges by approximating the weighted sum of squares of image patches shifted by certain
values.

Next, we apply a pyramidal Lucas-Kanade method [114] for determining optical flow at each
point of interest. We then find the mode of the resulting flow value pairs, including rotation,
by placing the pairs in bins. At every iteration, the bin widths are decreased, yielding an
increasingly accurate estimate of the motion. The image is then adjusted to account for the
determined background movement. When the image is stabilized in this manner, fewer false
foreground objects detected and correct coordinates of objects are also maintained.

6.4.2 Automated Track Initialization

The automated track initialization algorithm based on a confidence-based spatio-temporal
filtering algorithm first detects blobs using the GM Background Subtraction method [86].
This yields difference images, which are fed into the spatial filtering module.

Noise Removal through Morphological Operations

The image obtained through the background subtraction algorithm is initially opened and
then closed by a structuring element with diameter λ pixels to filter out unnecessary noise.
λ depends upon the scale of the video.

Robert J. DiBiano Chapter 6. MAPTrack 101

Spatial Filtering

Once blobs are detected in the difference images, they are filtered according to their spatial
features. Scale information available from the metadata accompanying the videos is used
to filter blobs specifically based on their area and orientation. The filtered blobs are then
passed as input to the temporal filtering algorithm below.

Temporal Filtering

To filter blobs in the temporal domain we use a confidence measure. Each blob has a
confidence measure δ associated with it. δ is initially 0 and increases as a blob is detected
across successive frames.

The probabilistic framework that we present takes into account three parameters, namely,
the motion of the object modeled using the Gaussian Mixture Background Subtraction al-
gorithm, the appearance of the tracked object using a color histogram, and the projected
location of the tracked object in the image space/frame sequence computed by applying a
Gaussian to the Region of Interest.

Defining an Adaptive Threshold

If the confidence value for a blob exceeds a specified upper threshold σ, a track is started on
it. The moment the confidence value for a blob falls beneath a lower threshold τ , the corre-
sponding object is discarded. If the confidence value is between σ and τ , the corresponding
blob is maintained in the list of prospective tracks. For videos that have higher noise, clutter
and random changes in lighting conditions, as is often the case for outdoor videos taken from
moving cameras, the upper threshold value σ is set higher. On the other hand, for videos
with more stable conditions σ is set lower because of the lesser probability of encountering
random classification noise.

The composite confidence update equation is as follows.

δ = (0.5−n) ∨ (−0.5−n) (6.1)

6.4.3 The MAPTrack Framework

Motion – The Gaussian Mixture Background subtraction method helps in determining the
positional estimates for all moving objects in the scene. It is reasonable to consider all
moving objects to be a part of the foreground. Our framework builds a background model

Robert J. DiBiano Chapter 6. MAPTrack 102

of Gaussians, with a mean and standard deviation for each pixel. If a new pixel does not fit
well with the Gaussians, it is considered to be part of the moving foreground.

Appearance – The appearance of any object in a scene is another important parameter
in visual tracking. Object appearance can be modeled using the color histogram associated
with it. Operationally, the motion image is used as a mask to create histograms of object
pixels for each Region of Interest (ROI). Histograms are implemented as 3d RGB histograms
with 32 bins in each R, G, and B direction. For example, bin(0,0,0) contains R=0 to 7, G=0
to 7, B=0 to 7, etc.

Histograms are created for foreground (hfg) and background (hbg) components of the current
motion image at the current frame. Each bin in a current histogram contains the count of
the pixels that fall in that bin. The background histograms are normalized to make the
count of pixels in each equal to the number of foreground pixels in the motion image.

hbg =
hbg × |hfg|
|hbg|

(6.2)

So, both foreground and background image have magnitude equal to the number of fore-
ground pixels in the motion image (e.g., when the object is stopped, both current-frame
histograms have 0 magnitude). The cumulative histograms (Hfg and Hbg) are updated using
a running average:

H =
H́× (n− 1) + h

n
(6.3)

where n is minimum of the current frame number and the point at which the average will
change to exponential decay and H́ is the cumulative histogram value from the last frame.

A probability image is created for the pixels in the ROI from the Bayes equation:

P (FG | ẑ) = P (ẑ | FG)× P (FG)

P (z̄)

= H (ẑ)× avgFG

(H (ẑ)×avgFG+ (H (ẑ)×(1− avgFG))

P (x, y) =

{
1, if P (FG|ẑ) > 0.5,

0, otherwise.

(6.4)

where, avgFG is the sum of the motion history image described below. In other words, if a
pixel color is more likely to lie in the object foreground, it will be ‘1’. Otherwise it will be
‘0’.

Projected Position – The estimate of the projected position of an object over an image

Robert J. DiBiano Chapter 6. MAPTrack 103

Figure 6.2: a) Image b) Motion Pixels c) Appearance Pixels d) Projected Position Pixels

sequence is another determining factor in visual tracking. The position is estimated using
the previous position and estimated velocity:

pest = ṕact + v (6.5)

where, v is calculated as:

v =
p− p0
f − f0

(6.6)

Here, f 0 is the nearest previous frame where the object is at a distance of at least 1 ROI
width from current position if it exists and max (0, f -150), otherwise. p0 is the position at
that frame.

A positional probability image for the ROI is created using a conical shape.

Prob (x, y) = max− (max−min)×

√(
x− cx
cx

)2

+

(
y − cy
cy

)2

(6.7)

where (cx, cy) is the center of the ROI, max is the probability value at the center that is
equal to 1, and min is the probability at the edges.

This image represents the estimated position or velocity of the object, and reduces movement
from this estimated location. Thus, the probability is highest where the object is most likely
to be present (in the center).

In addition, a motion history image is created to estimate the probable object shape, size,
and location within the ROI. Similar to the color histograms, it is updated as:

mh (f) =
(mh (f − 1)×historysize (f − 1) + MC×w)

(historysize (f − 1) + w)
(6.8)

where, historysize(f) = min(historysize (f − 1) + w, N), and w =
∑T

i=1 (
MC

ROIarea
)

as a scale factor based on the amount of movement present. N is again the point at which

Robert J. DiBiano Chapter 6. MAPTrack 104

the average will change to exponential decay. MC is the image of all moving pixels in the
ROI matching the foreground color, as determined by the color histogram of the object. T
represents all the pixels in ROI. Each of the Motion, Color, and Positional probability images
is centered over the estimated position calculated above. Once the images are obtained, they
are combined into a composite probability image (CPI) by using the following equation:

CPI = max (M×C×P×σ1, C×P× σ2, P× σ3) (6.9)

Here, σ1, σ2, and σ3 are parameters that determine the relative weights given to the Mo-
tion, Color histogram, and Positional Probability images respectively towards the Composite
Probability Image I. Intuitively, equation (6.9) is a exclusive OR over the values M×C×P,
C×P and P where the C×P or P parts are used only when the M value is 0 and P is
used only when both M and C are 0. It should be noted that M×C×P uses the conical
probability image for P, to utilize any motion of matching color within the ROI, whereas
C×P uses the motion history image for P, such that still background of a matching color
will not cause a track loss.

Since the motion probability image is the most important parameter for object tracking,
MCP is assigned the highest weight. The color histogram probability image is less important,
followed by the positional probability image. In fact, we found that the P image alone does
not work well to deal with occlusions due to the effective velocity of the object decreasing
immediately before an occlusion.

The occlusion detection algorithm described below is instead used to handle occlusions and
changing lighting conditions. Finally, the mean shift algorithm is used to compute the
actual position of the object by shifting the estimate to the new Center of Mass (COM) of
the current observation. The mean shift equation is given in equation (6.10).

Posact(f) = Posest(f) + COM(f) (6.10)

where, Posact(f) is the actual position computed at frame f , Posest(f) is the estimated
position at frame f and COM(f) is the Center of Mass used by the mean shift algorithm for
estimating the actual position of the object at frame f.

So, the mean shift gives the posterior probability distribution given the prior and the likeli-
hood function. The positional estimate for the actual object location generated by the mean
shift algorithm for a given frame f is used to compute the positional estimate for the next
frame f+1 according to equation (6.5) and the system continues.

Occlusion Detection – The problem with using the position probability image (P) to han-
dle an occlusion was primarily due to the decreasing effective velocity (since the occluded
edge is not effectively moving, the velocity of the center of mass effectively reduces) of the
object prior to the occlusion since the partially occluded center of mass moves at approxi-

Robert J. DiBiano Chapter 6. MAPTrack 105

Figure 6.3: Foreground and Background Color Histograms of the two cars.

mately half of the actual velocity of the object. Since P would only be used where M×C×P
and C×P are very small, a metric is instead used to detect an occlusion:

occval =
T∑
i=1

(CPmotionhistory)
2∑T

i=1C
(6.11)

CPmotionhistory is the estimate of the amount of color matching in the object foreground, and
C is the amount of matching color in all of the ROI. Thus, occval will be small when either
the amount of color in the object is small, or the amount of matching color in the background
is very large. An occlusion is detected if:

occval(f) < tocc × max(occval(n)) (6.12)

where, n is a frame number between f0 and f with f being the current frame and f0the nearest
frame where the object is at least one ROI width distance from the current position, or max(1,
f -150) if that doesn’t exist, and tocc is the threshold for occlusion. When an occlusion is
detected, the velocity from frame f0 is used as an estimate of the current velocity, and the
current position is adjusted to reflect that velocity.

pest(f) = pest(f0) + v(f0) × (f − f0) (6.13)

This estimated velocity remains the same while the object is occluded. The ROI is allowed
to drift up to half its length from the estimated position towards the center of mass while
occluded to allow it to jump to the object when it is again present. The occlusion is ended
when significant motion of matching color is again present:

Robert J. DiBiano Chapter 6. MAPTrack 106

Figure 6.4: Output from MAPTrack (Left) and TLD (right). TLD switches randomly be-
tween similar objects in noisy videos.

N∑
i=1

MCP×

(∑T
i=1CPmotionhistory∑N

i=1C

)
> τ ∗max (occval (n)) (6.14)

where, τ is the threshold to end the occlusion, currently set to 0.3. If the occlusion does not
resolve within 150 frames or 3 ROI widths, whichever is smaller, the track is ended.

6.5 Implementation Details

The tracking algorithm was implemented in C++ using the OpenCV library [30] for real-time
computer vision. The experiments were conducted on an Intel I5 machine with 6 gigabytes
of memory.

6.6 Results and Comparative Studies

We compare results from our tracker against existing trackers whose outputs are available at
the publicly available TLD dataset [89]. Table 6.1 shows the different states of the tracked
object inferred at different values for the Motion, Color and Positional Probability images.
Table 6.3 gives the number of frames up to the first track loss for the TUD dataset [5]. It
can be seen that MAPTrack outperforms the TUD Detector on both categories of the TUD
Dataset. Table 6.2 shows the number of frames after which the trackers lost track for the
first time. MAPTrack outperforms other trackers in all of the cases (except motocross).
TLD is based on template matching and hence fails for videos with multiple similar looking
objects. This is illustrated in Fig. 6.4 where TLD switches tracks arbitrarily between similar
looking foreground objects whereas MAPTrack keeps tracking a particular object for the
entire time frame of its visibility. We also compare our tracker against the TUD Pedestrian
Detector [5] for multi-object tracking. The performance metric used was taken from in [160].
Fig. 6.7 shows the ROC curve for the tracker and Fig. 6.8 shows the results from MAPTrack.
Table 6.4 lists the results for occlusion on videos from the /acrshortvirat public dataset
available online [178].

Robert J. DiBiano Chapter 6. MAPTrack 107

Figure 6.5: MAPTrack results for TUD videos.

Our system performed object tracking plus some simple event detections at an average of
86.0027 frames per second per track, varying somewhat depending on image complexity and
resolution. This is approximately 3 times real time, per track, but it is worth noting that
the process can be multithreaded per track, and many of the underlying algorithms can be
further sped up at least an order of magnitude by parallel processing on a video card.

Motion
Color

Histogram
Projected
Position

Inferred
State

0 0 0 Lost Track
0 0 1 Occlusion
0 1 0 Wrong Object
0 1 1 Stopped
1 0 0 Wrong Object
1 0 1 Wrong Object
1 1 0 Wrong Object

1 1 1
Moving
Object

Table 6.1: The different states of the tracked object.

6.7 Conclusions

We presented a robust tracking framework that uses a probabilistic scheme to combine a
motion model of an object with that of its appearance and an estimation of its position. Our
tracking framework is robust to abrupt changes in lighting conditions, can follow an object
through occlusions. The track starts automatically based on a spatio-temporal algorithm.

It can also simultaneously track multiple moving foreground objects of different types (e.g.,
vehicles, human, etc.) even when they are closely spaced. A “dynamic” integration of
the framework with optical flow allows us to track videos resulting from significant camera
motion.

Robert J. DiBiano Chapter 6. MAPTrack 108

Table 6.2: Comparison of single-object trackers in (Kalal et al., 2010) with MAPTrack.
Shows the number of frames after which the trackers lost track for the first time

We plan to use the results generated by the tracking algorithm to infer trajectory-based
events like vehicle turns as well as other complex events like accidents and traffic violations.

Campus
Correct (False)

Crossing
Correct (False)

Expected 303 1008
TUD Detector 227(0) 692(7)
MAPTrack 255(0) 723(5)

Table 6.3: Tracker results for TUD (Andriluka et al., 2008).

Robert J. DiBiano Chapter 6. MAPTrack 109

Figure 6.6: Image of people and cars, the images are the ROI images, followed by MCP, CP,
Velocity Image and the Weighted Composite Image from top to bottom.

Figure 6.7: ROC curve for the tracker.

Table 6.4: Results from the tracker (Metric used as in (Smith et al., 2005) [160]). Scores for
configuration distance, multiple objects, multiple tracks, false positives, and tracker purity
are defined.

Robert J. DiBiano Chapter 6. MAPTrack 110

Figure 6.8: Results from MAPTrack.

Chapter 7

Conclusions and Future Work

7.1 Food Analysis

Implementing the system described in chapter 4 gave us new insights into the problems of
food recognition. Our experiments show that the 3 major problems of food analysis are
iterative segmentation, ranked classification with many classes, and food volume estimation.
We provided solutions to 2 of these 3 problems with good results, and provided some insight
into the third problem of iterative segmentation.

The full confusion matrix for our experiment with 110 food types is shown in figure 7.1.
Each row corresponds to images of a single food type, and each column corresponds to what
those images were actually classified as. Brighter squares represent higher confidence of a
match. The diagonal line down the center represents correct classifications. Single bright
spots away from the center represent food pairs that can easily be confused with each other.
The brighter horizontal lines under a few food classes represent food classes that contain
many different possible colors, such that most foods can get confused for them.

We analyzed the erroneous classifications in our experiments and identified several notable
sources of error. Lighting differences between training and testing sets caused problems,
even with lighting normalization. This could be mitigated but not solved by using more
sophisticated lighting normalization. Another possibility would be to get much more training
data under different lighting conditions, or to simulate different lightings during training.
Another source of error was testing foods that looked significantly different from any of the
training samples of that type. We later mitigated the problem by adding online retraining,
the other obvious solution would be to use a lot more training data with many different-
looking versions of each food type. Finally, some types of salads with many subfoods matched
well against most foods. This was not a problem with a few hundred types since the correct
foods generally ranked higher, but as the system scales up several more orders of magnitude,
having these types cluttering up the top tiers of the ranked list may eventually become a

111

Robert J. DiBiano Chapter 7. Conclusions 112

problem. To correct for this source of confusion, features targeted at these food types should
be included in the feature extractor - either part-based features along the lines of [198], or
global features like those used in some non-rigid object trackers [34].

7.2 Tracking

Our agile tracking framework described in chapter 5 provided a novel method for tracking
in low quality videos, and we showed that in cases where the tracker’s error rate can be esti-
mated that it holds up well against similar robust-type trackers. Our agile framework allows
dynamic tracker switching based on performance measure, resulting in a tracker with more
accuracy than any of the individual algorithms. Our tracker has motion based automatic
track starting, tracks multiple similar objects simultaneously, and accounts for near passes
of similar objects.

Our MAPTrack, described in chapter 6, built on many of the features of the agile tracker,
introducing shape and appearance modeling, and soft switching between tracking models
to allow information from multiple pertinent models to be combined. We showed that
MAPTrack provided very good performance on a number of tracking problems videos of cars
and humans, low quality videos, and videos with nonrigid moving objects. MAPTrack uses a
probabilistic scheme to combine motion, appearance, and position information as available,
and can follow an object through sudden changes in lighting and past occlusions.

7.3 Future Work - Food Recognition

Iterative Segmentation

There is the most room for future work in food segmentation, since the multifood segmen-
tation problem is algorithmically interesting and has yet to be conclusively solved. We
attempted segmentation by classification with no success on large numbers of foods, but
other research suggests this could be handled by doing an initial segmentation with only a
few generalized food groups [8]. With some kind of initial segmentation, be it color, texture,
or food groups based, the votes at each patch could be used to region merge by classifica-
tion. Alternatively, some kind of clustering could be used to automatically form a small set
of common food groups for initial segmentation.

Without the assumption of one food per plate, there are 2 types of multimode regions that
are difficult to segment. Firstly there are regions with several large regions with different
colors, such as lemon meringue pie. Second there are regions that have higher frequency
fluctuations between several different colors such as lasagna or mixed vegetables. It may be
possible to use the classification data after the fact to intelligently merge nearby regions,

Robert J. DiBiano Chapter 7. Conclusions 113

Figure 7.1: Confusion matrix.

Robert J. DiBiano Chapter 7. Conclusions 114

even if they have different colors/textures. Since the system is based on voting block by
block, you simply merge the 2 final vote tallies to reclassify a region after a merge. This
makes the first type approachable. The second type can be approached the same way, with
the additional option of instituting a minimum initial segment size to stop a multimode food
from being able to fragment into dozens of regions. A split would be more problematic,
requiring a re-voting.

Segmenting by very broad classification into food groups has shown some good results in
other systems, but no automatic system for forming these groups has been proposed. It
would be helpful if the groups were something that a classifier can distinguish between; if
every color/texture of food is represented equally in every group, classification would be
difficult even if the groups were correct. On the other hand, analyzing actual meals and
finding which foods don’t co-occur in the same meal would be the direct way of finding the
true food groups. So segmentation would ideally require an optimization between these 2
constraints.

Ranked Classification

Convolution neural networks have shown a lot of promise for object recognition lately; but
the consensus seems to be that they aren’t any better, and are probably worse, than the
old hand crafted Haralick features [72] for texture analysis. So most of the improvements
to be made in the classification are algorithmic improvements to improve speed, and new
handcrafted features that work well on the dataset.

If a specialist network does not get many positive results, it can stop running as soon as
it can be confident it is statistically improbable that its food will be near the top of the
results list. Similarly, foods near the top of the list no longer need to be queried once it is
statistically improbable they will change rankings during the rest of the search. This could
speed up classification by orders of magnitude at minimal loss in accuracy.

Histograms can capture detailed color data, but can produce very high dimensional feature
vectors, which are correlated and individually very weak classifiers. Histogram difference is
the distance between the histogram of the current region and a “baseline” histogram stored
for the target food type. So the distance between a given sample and every known food can
be computed. Although this actually generates one feature per food type, each classifier only
needs to check the distance associated with its assigned food; meaning a fairly meaningful
histogram analysis can be computed with only a single additional distance feature for each
classifier.

By grouping foods that match well against each training image, it may be possible to infer
which foods are similar and form food clusters. Having specialist networks for recognizing
each cluster could be another way to extend the algorithm to even larger numbers of foods.
This type of hierarchical implementation is useful for truly large numbers of classes - in our

Robert J. DiBiano Chapter 7. Conclusions 115

case it is very important that foods that often get confused for each other be in the same
cluster.

The simplest approach would be to cluster foods based on their coordinates in the feature
space. A better way might be to form a high multidimensional solution space by using our
classifier on every type of training sample, and clustering this way. But the high dimension-
ality would be a problem for many clustering algorithms. A compromise would be to use
an unlabeled training method; which creates a solution space with any chosen number of
dimensions. Since the data is unlabeled, these outputs don’t correspond to actual classifi-
cations; but the clusters should correspond to the same things the final classifier would find
similar.

Volume Estimation

Our volume estimation doesn’t work as well on liquid foods; it could benefit from some
way of identifying known containers. This would need to use both information on the user
that had taken the image, and some sort of container detection/matching method. In order
to significantly improve accuracy in other cases, a good 2 image estimation method or 3d
scanning hardware would probably be required.

Other Future Work

Because most lighting was standardized for our dataset, only crude naive “white patch”
lighting normalization was ever implemented. A better method should be used in future
work. Scale normalization was not done before classification for the same reason, but should
probably be done in the more general case as well.

It is worth noting that the “big data” approach of using massive amounts of training data
from the Internet would probably solve the lighting problem and the problem of food with
many possible appearances. This method has recently showed good results in similar object
detection tasks.

7.4 Future Work - Tracking

As discussed in chapter 2.2.15, the best approaches to surveillance are application specific
[49]. Our dataset contained both low quality aerial and good quality ground surveillance
videos. The extreme variance in quality within the /acrshortvirat dataset [178] combined
with the requirement to automatically start tracks limits the available approaches to the
very broadly applicable ones that will solve both problems.

Robert J. DiBiano 116

Trackers like [162] that separate tracking into subproblems, or like [91] that optimize be-
tween tracking and detection seem to often produce the most practical trackers. Optimizing
between a tracker suitable for high quality and low quality videos might be a good direction
for future work.

An expanded approach might be to split the problem into 2 separate subproblems for the
2 major data types, and handle them with different trackers (via the agile framework). For
example, classifier grids [148] are a powerful tool for fixed camera surveillance, but are useless
for the aerial dataset. There are any number of more sophisticated approaches that give good
results but don’t apply to the low quality aerial data. The agile framework could be bolstered
with expert knowledge on these 2 problem classes if necessary to let it distinguish accurately
between them.

Similarly, our tracker could be integrated with stronger detection than our simple appearance
model. While offline learning is not an option, our tracker could take advantage of online
learning, using the existing tracker to bootstrap initial foreground and background models.
After a few frames the classification could be integrated into the appearance model. This
would add strong tracking by detection that could be used to simplify occlusion detection,
track loss, and recovery of lost tracks.

We plan to use the results generated to infer trajectory based events such as different types
of turns and traffic maneuvers, collisions, entering and exiting vehicles and buildings, etc.

Bibliography

[1] A. Adam, E. Rivlin, and I. Shimshoni. Robust fragments-based tracking using the in-
tegral histogram. In Computer Vision and Pattern Recognition, 2006 IEEE Computer
Society Conference on, volume 1, pages 798–805, June 2006.

[2] Shivani Agarwal and Dan Roth. Learning a sparse representation for object detection.
In Anders Heyden, Gunnar Sparr, Mads Nielsen, and Peter Johansen, editors, Com-
puter Vision ECCV 2002, volume 2353 of Lecture Notes in Computer Science, pages
113–127. Springer Berlin Heidelberg, 2002.

[3] LSU agile framework tracker. https://xythos.lsu.edu/users/mstagg3/web/

tracker/. Accessed: 2013.

[4] R. Almaghrabi, G. Villalobos, P. Pouladzadeh, and S. Shirmohammadi. A novel
method for measuring nutrition intake based on food image. In Instrumentation and
Measurement Technology Conference (I2MTC), 2012 IEEE International, pages 366–
370, May 2012.

[5] M. Andriluka, S. Roth, and B. Schiele. People-tracking-by-detection and people-
detection-by-tracking. In Computer Vision and Pattern Recognition, 2008. CVPR
2008. IEEE Conference on, pages 1–8, June 2008.

[6] Robert Andrle. The angle measure technique: A new method for characterizing the
complexity of geomorphic lines. Mathematical Geology, 26(1):83–97, 1994.

[7] Anhui vision Optoelectronics Technology Co., Ltd. http://en.ahvision.cn/. Accessed:
04/14/2015.

[8] M. Anthimopoulos, L. Scarnato, P. Diem, and S. Mougiakakou. SEGMENTATION
AND RECOGNITION OF FOOD IMAGES FOR CARBOHYDRATE COUNTING.
DIABETES TECHNOLOGY & THERAPEUTICS, 15(1):A99, FEB 2013.

[9] Lenore Arab and Ashley Winter. Automated camera-phone experience with the fre-
quency of imaging necessary to capture diet. Journal of the American Dietetic Asso-
ciation, 110(8):1238 – 1241, 2010.

117

https://xythos.lsu.edu/users/mstagg3/web/tracker/
https://xythos.lsu.edu/users/mstagg3/web/tracker/

Robert J. DiBiano 118

[10] M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle
filters for online nonlinear/non-gaussian bayesian tracking. Signal Processing, IEEE
Transactions on, 50(2):174–188, Feb 2002.

[11] ASA24. http://riskfactor.cancer.gov/tools/instruments/asa24/. Accessed:
03/14/2012.

[12] S. Avidan. Support vector tracking. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 26(8):1064–1072, Aug 2004.

[13] S. Avidan. Ensemble tracking. In Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on, volume 2, pages 494–501 vol. 2,
June 2005.

[14] B. Babenko, Ming-Hsuan Yang, and S. Belongie. Visual tracking with online multiple
instance learning. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pages 983–990, June 2009.

[15] M. O. Balaban. Quantifying Nonhomogeneous Colors in Agricultural Materials Part I:
Method Development. JOURNAL OF FOOD SCIENCE, 73(9):S431–S437, NOV-DEC
2008.

[16] M. O. Balaban, J. Aparicio, M. Zotarelli, and C. Sims. Quantifying Nonhomogeneous
Colors in Agricultural Materials. Part II: Comparison of Machine Vision and Sensory
Panel Evaluations. JOURNAL OF FOOD SCIENCE, 73(9):S438–S442, NOV-DEC
2008.

[17] Tom Baranowski, Janice C Baranowski, Kathleen BWatson, Shelby Martin, Alicia Bel-
tran, Noemi Islam, Hafza Dadabhoy, Su-heyla Adame, Karen Cullen, Debbe Thomp-
son, Richard Buday, and Amy Subar. Childrens accuracy of portion size estimation
using digital food images: effects of interface design and size of image on computer
screen. Public Health Nutrition, 14:418–425, 3 2011.

[18] J.L. Barron, D.J. Fleet, S.S. Beauchemin, and T.A. Burkitt. Performance of opti-
cal flow techniques. In Computer Vision and Pattern Recognition, 1992. Proceedings
CVPR ’92., 1992 IEEE Computer Society Conference on, pages 236–242, Jun 1992.

[19] R.W Bass, V.D Norum, and L Schwartz. Optimal multichannel nonlinear filtering.
Journal of Mathematical Analysis and Applications, 16(1):152 – 164, 1966.

[20] Saikat Basu, Robert Di Biano, Manohar Karki, Malcom Stagg, Jerry Weltman,
Supratik Mukhopadhyay, and Sangram Ganguly. An agile framework for real-time
motion tracking. COMPSAC, 2015.

Robert J. DiBiano 119

[21] Saikat Basu, Manohar Karki, Malcolm Stagg, Robert DiBiano, Sangram Ganguly, and
Supratik Mukhopadhyay. Maptrack - a probabilistic real time tracking framework
by integrating motion, appearance and position models. In Proceedings of the 10th
International Conference on Computer Vision Theory and Applications, pages 567–
574, 2015.

[22] MH Bharati, JJ Liu, and JF MacGregor. Image texture analysis: methods and
comparisons. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS,
72(1):57–71, JUN 28 2004.

[23] Michael J. Black and Allan D. Jepson. Eigentracking: Robust matching and tracking
of articulated objects using a view-based representation. International Journal of
Computer Vision, 26(1):63–84, 1998.

[24] Andrew Blake, Pushmeet Kohli, and Carsten Rother. Markov Random Fields for
Vision and Image Processing. The MIT Press, 2011.

[25] Marc Bosch, Fengqing Zhu, Nitin Khanna, Carol J. Boushey, and Edward J. Delp. Food
texture descriptors based on fractal and local gradient information. August 2011.

[26] Jean-Yves Bouguet. Pyramidal implementation of the lucas kanade feature tracker
description of the algorithm, 2000.

[27] C. J. Boushey, D. A. Kerr, J. Wright, K. D. Lutes, D. S. Ebert, and E. J. Delp. Use of
technology in children’s dietary assessment. Eur J Clin Nutr, 63 Suppl 1:S50–57, Feb
2009.

[28] Y Boykov, O Veksler, and R Zabih. Fast approximate energy minimization via graph
cuts. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTEL-
LIGENCE, 23(11):1222–1239, NOV 2001.

[29] Y.Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal boundary amp; re-
gion segmentation of objects in n-d images. In Computer Vision, 2001. ICCV 2001.
Proceedings. Eighth IEEE International Conference on, volume 1, pages 105–112 vol.1,
2001.

[30] G. Bradski. Opencv library. Dr. Dobb’s Journal of Software Tools, 2000.

[31] T Brosnan and DW Sun. Inspection and grading of agricultural and food products by
computer vision systems - a review. COMPUTERS AND ELECTRONICS IN AGRI-
CULTURE, 36(2-3):193–213, NOV 2002. International Conference on Engineering and
Technological Sciences, BEIJING, PEOPLES R CHINA, OCT 11-14, 2000.

[32] T.F. Burks, S.A. Shearer, J.R. Heath, and K.D. Donohue. Evaluation of neural-network
classifiers for weed species discrimination. Biosystems Engineering, 91(3):293–304,
2005.

Robert J. DiBiano 120

[33] Emmanuel J. Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal com-
ponent analysis? J. ACM, 58(3):11:1–11:37, June 2011.

[34] L. Cehovin, M. Kristan, and A. Leonardis. An adaptive coupled-layer visual model
for robust visual tracking. In Computer Vision (ICCV), 2011 IEEE International
Conference on, pages 1363–1370, Nov 2011.

[35] J. Chae, I. Woo, S. Kim, R. Maciejewski, F. Zhu, E. J. Delp, C. J. Boushey, and
D. S. Ebert. Volume Estimation Using Food Specific Shape Templates in Mobile
Image-Based Dietary Assessment. Proc SPIE, 7873:78730K, Feb 2011.

[36] Cheng Chang and R. Ansari. Kernel particle filter for visual tracking. Signal Processing
Letters, IEEE, 12(3):242–245, March 2005.

[37] Cheng Chang, R. Ansari, and A. Khokhar. Multiple object tracking with kernel par-
ticle filter. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, volume 1, pages 566–573 vol. 1, June 2005.

[38] Rama Chellappa and Shankar Chatterjee. Classification of textures using gaussian
markov random fields. Acoustics, Speech and Signal Processing, IEEE Transactions
on, 33(4):959–963, 1985.

[39] Cheng-Lun Chen and Shao-Hua Lin. Intelligent color temperature estimation using
fuzzy neural network with application to automatic white balance. In Systems Man
and Cybernetics (SMC), 2010 IEEE International Conference on, pages 796–803, Oct
2010.

[40] D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking of non-rigid objects using
mean shift. In Computer Vision and Pattern Recognition, 2000. Proceedings. IEEE
Conference on, volume 2, pages 142–149 vol.2, 2000.

[41] Dorin Comaniciu, Visvanathan Ramesh, Peter Meer, Senior Member, and Senior Mem-
ber. Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 25:564–577, 2003.

[42] Richard W Conners and Charles A Harlow. A theoretical comparison of texture algo-
rithms. Pattern Analysis and Machine Intelligence, IEEE Transactions on, (3):204–
222, 1980.

[43] George R Cross and Anil K Jain. Markov random field texture models. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, (1):25–39, 1983.

[44] et.al. D. T. Ross. Systematic variation in gene expression patterns in human cancer
cell lines. Nature Genetics, 24(3):227–235, 2000.

Robert J. DiBiano 121

[45] A. Dahl Lassen, S. Poulsen, L. Ernst, K. Kaae Andersen, A. Biltoft-Jensen, and
I. Tetens. Evaluation of a digital method to assess evening meal intake in a free-living
adult population. Food Nutr Res, 54, 2010.

[46] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In
Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society
Conference on, volume 1, pages 886–893 vol. 1, June 2005.

[47] B. L. Daugherty, T. E. Schap, R. Ettienne-Gittens, F. M. Zhu, M. Bosch, E. J. Delp,
D. S. Ebert, D. A. Kerr, and C. J. Boushey. Novel technologies for assessing dietary
intake: evaluating the usability of a mobile telephone food record among adults and
adolescents. J. Med. Internet Res., 14(2):e58, 2012.

[48] E. R. Davies. The application of machine vision to food and agriculture: a review.
IMAGING SCIENCE JOURNAL, 57(4):197–217, AUG 2009.

[49] HannahM. Dee and SergioA. Velastin. How close are we to solving the problem of
automated visual surveillance? Machine Vision and Applications, 19(5-6):329–343,
2008.

[50] J. Dehais, S. Shevchik, P. Diem, and S.G. Mougiakakou. Food volume computation for
self dietary assessment applications. In Bioinformatics and Bioengineering (BIBE),
2013 IEEE 13th International Conference on, pages 1–4, Nov 2013.

[51] Robert Dibiano, Bahadir K. Gunturk, and Corby K. Martin. Food image analysis for
measuring food intake in free living conditions. volume 8669, pages 86693N–86693N–
10, 2013.

[52] Chris Ding and Xiaofeng He. K-means clustering via principal component analysis. In
Proceedings of the Twenty-first International Conference on Machine Learning, ICML
’04, pages 29–, New York, NY, USA, 2004. ACM.

[53] CJ Du and DW Sun. Recent developments in the applications of image processing tech-
niques for food quality evaluation. TRENDS IN FOOD SCIENCE & TECHNOLOGY,
15(5):230–249, MAY 2004.

[54] CJ Du and DW Sun. Learning techniques used in computer vision for food quality
evaluation: a review. JOURNAL OF FOOD ENGINEERING, 72(1):39–55, JAN 2006.

[55] Kim H. Esbensen, Kent H. Hjelmen, and Knut Kvaal. The AMT approach in chemo-
metrics first forays. Journal of Chemometrics, 10:569–590, 1996.

[56] Norasyikin Fadilah, Junita Mohamad-Saleh, Zaini Abdul Halim, Haidi Ibrahim, and
Syed Salim Syed Ali. Intelligent Color Vision System for Ripeness Classification of Oil
Palm Fresh Fruit Bunch. SENSORS, 12(10):14179–14195, OCT 2012.

Robert J. DiBiano 122

[57] Jialue Fan, Wei Xu, Ying Wu, and Yihong Gong. Human tracking using convolutional
neural networks. Neural Networks, IEEE Transactions on, 21(10):1610–1623, Oct 2010.

[58] Li Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object categories. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 28(4):594–611, April 2006.

[59] Pedro Felzenszwalb, David McAllester, and Deva Ramanan. A discriminatively trained,
multiscale, deformable part model. In Computer Vision and Pattern Recognition, 2008.
CVPR 2008. IEEE Conference on, pages 1–8. IEEE, 2008.

[60] Lorenzo Fongaro and Knut Kvaal. Surface texture characterization of an Italian pasta
by means of univariate and multivariate feature extraction from their texture images.
FOOD RESEARCH INTERNATIONAL, 51(2):693–705, MAY 2013.

[61] Nathan Funk. A study of the kalman filter applied to visual tracking. 2003.

[62] M. Godec, P.M. Roth, and H. Bischof. Hough-based tracking of non-rigid objects. In
Computer Vision (ICCV), 2011 IEEE International Conference on, pages 81–88, Nov
2011.

[63] Vural Gokmen and Idris Sugut. A Non-Contact Computer Vision Based Analysis of
Color in Foods. INTERNATIONAL JOURNAL OF FOOD ENGINEERING, 3(5),
2007.

[64] H. Grabner and H. Bischof. On-line boosting and vision. In Computer Vision and
Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 1, pages
260–267, June 2006.

[65] H. Grabner, M. Grabner, and H. Bischof. Real-time tracking via on-line boosting. In
Proc. BMVC, pages 6.1–6.10, 2006. doi:10.5244/C.20.6.

[66] H. Grabner, J. Matas, L. Van Gool, and P. Cattin. Tracking the invisible: Learning
where the object might be. In Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on, pages 1285–1292, June 2010.

[67] Helmut Grabner, Christian Leistner, and Horst Bischof. Semi-supervised on-line boost-
ing for robust tracking. In David Forsyth, Philip Torr, and Andrew Zisserman, editors,
Computer Vision ECCV 2008, volume 5302 of Lecture Notes in Computer Science,
pages 234–247. Springer Berlin Heidelberg, 2008.

[68] M. Grabner, H. Grabner, and H. Bischof. Learning features for tracking. In Computer
Vision and Pattern Recognition, 2007. CVPR ’07. IEEE Conference on, pages 1–8,
June 2007.

[69] G.D. Hager and P.N. Belhumeur. Efficient region tracking with parametric models of
geometry and illumination. Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on, 20(10):1025–1039, Oct 1998.

Robert J. DiBiano 123

[70] RM HARALICK. STATISTICAL AND STRUCTURAL APPROACHES TO TEX-
TURE. PROCEEDINGS OF THE IEEE, 67(5):786–804, 1979.

[71] RM HARALICK, SHANMUGA.K, and I DINSTEIN. TEXTURAL FEATURES FOR
IMAGE CLASSIFICATION. IEEE TRANSACTIONS ON SYSTEMS MAN AND
CYBERNETICS, SMC3(6):610–621, 1973.

[72] Robert M. Haralick, K. Shanmugam, and Its’Hak Dinstein. Textural features for image
classification. Systems, Man and Cybernetics, IEEE Transactions on, 3(6):610–621,
1973.

[73] Chris Harris and Mike Stephens. A combined corner and edge detector. In In Proc. of
Fourth Alvey Vision Conference, pages 147–151, 1988.

[74] Robin Hewitt. Seeing with opencv, part 3: Follow that face! SERVO Magazine, pages
36–40, March 2007.

[75] Berthold K. P. Horn and Brian G. Schunck. Determining optical flow. ARTIFICAL
INTELLIGENCE, 17:185–203, 1981.

[76] Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multiclass support
vector machines. Neural Networks, IEEE Transactions on, 13(2):415–425, Mar 2002.

[77] J. Illingworth and J. Kittler. A survey of the hough transform. Comput. Vision Graph.
Image Process., 44(1):87–116, August 1988.

[78] Michael Isard and Andrew Blake. Condensation - conditional density propagation for
visual tracking. International Journal of Computer Vision, 29:5–28, 1998.

[79] Patrick Jackman and Da-Wen Sun. Recent advances in image processing using im-
age texture features for food quality assessment. TRENDS IN FOOD SCIENCE &
TECHNOLOGY, 29(1):35–43, JAN 2013.

[80] Wenyan Jia, Yaofeng Yue, John D. Fernstrom, Ning Yao, Robert J. Sclabassi, Made-
lyn H. Fernstrom, and Mingui Sun. Imaged based estimation of food volume us-
ing circular referents in dietary assessment. JOURNAL OF FOOD ENGINEERING,
109(1):76–86, MAR 2012.

[81] Yu-Gang Jiang, Chong-Wah Ngo, and Jun Yang. Towards optimal bag-of-features for
object categorization and semantic video retrieval. In Proceedings of the 6th ACM
International Conference on Image and Video Retrieval, CIVR ’07, pages 494–501,
New York, NY, USA, 2007. ACM.

[82] A Jordan. On discriminative vs. generative classifiers: A comparison of logistic re-
gression and naive bayes. Advances in neural information processing systems, 14:841,
2002.

Robert J. DiBiano 124

[83] Taichi Joutou and Keiji Yanai. A food image recognition system with multiple kernel
learning. In Proceedings of the 16th IEEE International Conference on Image Process-
ing, ICIP’09, pages 285–288, Piscataway, NJ, USA, 2009. IEEE Press.

[84] Simon J. Julier and Jeffrey K. Uhlmann. New extension of the kalman filter to nonlinear
systems. volume 3068, pages 182–193, 1997.

[85] P. Kaewtrakulpong and R. Bowden. An improved adaptive background mixture model
for realtime tracking with shadow detection, 2001.

[86] P. KaewTraKulPong and R. Bowden. An improved adaptive background mixture
model for real-time tracking with shadow detection. In Paolo Remagnino, GraemeA.
Jones, Nikos Paragios, and CarloS. Regazzoni, editors, Video-Based Surveillance Sys-
tems, pages 135–144. Springer US, 2002.

[87] Hokuto Kagaya, Kiyoharu Aizawa, and Makoto Ogawa. Food detection and recog-
nition using convolutional neural network. In Proceedings of the ACM International
Conference on Multimedia, MM ’14, pages 1085–1088, New York, NY, USA, 2014.
ACM.

[88] Z. Kalal, J. Matas, and K. Mikolajczyk. Online learning of robust object detectors
during unstable tracking. In Computer Vision Workshops (ICCV Workshops), 2009
IEEE 12th International Conference on, pages 1417–1424, Sept 2009.

[89] Z. Kalal, J. Matas, and K. Mikolajczyk. P-n learning: Bootstrapping binary classifiers
by structural constraints. In Computer Vision and Pattern Recognition (CVPR), 2010
IEEE Conference on, pages 49–56, June 2010.

[90] Z. Kalal, K. Mikolajczyk, and J. Matas. Forward-backward error: Automatic de-
tection of tracking failures. In Pattern Recognition (ICPR), 2010 20th International
Conference on, pages 2756–2759, Aug 2010.

[91] Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-learning-detection. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 34(7):1409–1422, July 2012.

[92] R. E. Kalman and R. S. Bucy. New results in linear filtering and prediction theory.
Trans. ASME, Ser. D, J. Basic Eng, page 109, 1961.

[93] S. P. Kang and H. T. Sabarez. Simple colour image segmentation of bicolour food
products for quality measurement. JOURNAL OF FOOD ENGINEERING, 94(1):21–
25, SEP 2009.

[94] L.M. Kaplan and C.-C.J. Kuo. Extending self-similarity for fractional brownian mo-
tion. Trans. Sig. Proc., 42(12):3526–3530, December 1994.

Robert J. DiBiano 125

[95] Y. Kawano and K. Yanai. Real-time mobile food recognition system. In Computer
Vision and Pattern Recognition Workshops (CVPRW), 2013 IEEE Conference on,
pages 1–7, June 2013.

[96] Yoshiyuki Kawano and Keiji Yanai. Food image recognition with deep convolutional
features. In Proceedings of the 2014 ACM International Joint Conference on Pervasive
and Ubiquitous Computing: Adjunct Publication, UbiComp ’14 Adjunct, pages 589–
593, New York, NY, USA, 2014. ACM.

[97] Sertan Kaya. QUANTIFICATION OF ENERGY INTAKE USING FOOD IMAGE
ANALYSIS. Master’s thesis, LSU, USA, 2010.

[98] D. A. Kerr, C. M. Pollard, P. Howat, E. J. Delp, M. Pickering, K. R. Kerr, S. S.
Dhaliwal, I. S. Pratt, J. Wright, and C. J. Boushey. Connecting Health and Technology
(CHAT): protocol of a randomized controlled trial to improve nutrition behaviours
using mobile devices and tailored text messaging in young adults. BMC Public Health,
12:477, 2012.

[99] Sujung Kim, Wook-Joong Kim, and Seong-Dae Kim. Automatic white balance based
on adaptive feature selection with standard illuminants. In Image Processing, 2008.
ICIP 2008. 15th IEEE International Conference on, pages 485–488, Oct 2008.

[100] Zuwhan Kim. Realtime object tracking based on dynamic feature grouping with back-
ground subtraction. In Proc. IEEE Comput. Vis. Pattern Recog, pages 1–8, 2008.

[101] Keigo Kitamura, Toshihiko Yamasaki, and Kiyoharu Aizawa. Food log by analyzing
food images. In Proceedings of the 16th ACM International Conference on Multimedia,
MM ’08, pages 999–1000, New York, NY, USA, 2008. ACM.

[102] Junseok Kwon and Kyoung Mu Lee. Highly nonrigid object tracking via patch-based
dynamic appearance modeling. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 35(10):2427–2441, Oct 2013.

[103] Xiangyang Lan and D.P. Huttenlocher. A unified spatio-temporal articulated model for
tracking. In Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings
of the 2004 IEEE Computer Society Conference on, volume 1, pages I–722–I–729 Vol.1,
June 2004.

[104] B. Leibe, K. Schindler, N. Cornelis, and L. Van Gool. Coupled object detection and
tracking from static cameras and moving vehicles. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 30(10):1683–1698, Oct 2008.

[105] B. Leibe, K. Schindler, and L. Van Gool. Coupled detection and trajectory estima-
tion for multi-object tracking. In Computer Vision, 2007. ICCV 2007. IEEE 11th
International Conference on, pages 1–8, Oct 2007.

Robert J. DiBiano 126

[106] Bastian Leibe, Edgar Seemann, and Bernt Schiele. Pedestrian detection in crowded
scenes. In Proceedings of the 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05) - Volume 1 - Volume 01, CVPR ’05, pages
878–885, Washington, DC, USA, 2005. IEEE Computer Society.

[107] C. Leistner, H. Grabner, and H. Bischof. Semi-supervised boosting using visual simi-
larity learning. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE
Conference on, pages 1–8, June 2008.

[108] Xin Li and S. S. Iyengar. On computing mapping of 3d objects: A survey. ACM
Comput. Surv., 47(2):34:1–34:45, December 2014.

[109] Yuan Li, Haizhou Ai, T. Yamashita, Shihong Lao, and M. Kawade. Tracking in low
frame rate video: A cascade particle filter with discriminative observers of different
lifespans. In Computer Vision and Pattern Recognition, 2007. CVPR ’07. IEEE Con-
ference on, pages 1–8, June 2007.

[110] Huan Liu and Hiroshi Motoda. Feature Selection for Knowledge Discovery and Data
Mining. Kluwer Academic Publishers, Norwell, MA, USA, 1998.

[111] Tie-Yan Liu, Yiming Yang, Hao Wan, Hua-Jun Zeng, Zheng Chen, and Wei-Ying Ma.
Support vector machines classification with a very large-scale taxonomy. SIGKDD
Explor. Newsl., 7(1):36–43, June 2005.

[112] Paolo Lombardi and Cristina Versino. Learning to detect event sequences in surveil-
lance streams at very low frame rate. In Liang Wang, Guoying Zhao, Li Cheng, and
Matti Pietikinen, editors, Machine Learning for Vision-Based Motion Analysis, Ad-
vances in Pattern Recognition, pages 117–144. Springer London, 2011.

[113] Philip M. Long and Rocco A. Servedio. Random classification noise defeats all convex
potential boosters. Mach. Learn., 78(3):287–304, March 2010.

[114] Bruce D. Lucas and Takeo Kanade. An iterative image registration technique with an
application to stereo vision. In Proceedings of the 7th International Joint Conference
on Artificial Intelligence - Volume 2, IJCAI’81, pages 674–679, San Francisco, CA,
USA, 1981. Morgan Kaufmann Publishers Inc.

[115] E. Maggio and A. Cavallaro. Hybrid particle filter and mean shift tracker with adap-
tive transition model. In Acoustics, Speech, and Signal Processing, 2005. Proceedings.
(ICASSP ’05). IEEE International Conference on, volume 2, pages 221–224, March
2005.

[116] S Majumdar and DS Jayas. Classification of bulk samples of cereal grains using machine
vision. JOURNAL OF AGRICULTURAL ENGINEERING RESEARCH, 73(1):35–47,
MAY 1999.

Robert J. DiBiano 127

[117] S Majumdar and DS Jayas. Classification of cereal grains using machine vision: II.
Color models. TRANSACTIONS OF THE ASAE, 43(6):1677–1680, NOV-DEC 2000.

[118] A. Mariappan, M. Bosch, F. Zhu, C. J. Boushey, D. A. Kerr, D. S. Ebert, and E. J.
Delp. Personal Dietary Assessment Using Mobile Devices. Proc SPIE, 7246, Jan 2009.

[119] C. K. Martin, J. B. Correa, H. Han, H. R. Allen, J. C. Rood, C. M. Champagne, B. K.
Gunturk, and G. A. Bray. Validity of the Remote Food Photography Method (RFPM)
for estimating energy and nutrient intake in near real-time. Obesity (Silver Spring),
20(4):891–899, Apr 2012.

[120] C. K. Martin, H. Han, S. M. Coulon, H. R. Allen, C. M. Champagne, and S. D. Anton.
A novel method to remotely measure food intake of free-living individuals in real time:
the remote food photography method. Br. J. Nutr., 101(3):446–456, Feb 2009.

[121] C. K. Martin, S. Kaya, and B. K. Gunturk. Quantification of food intake using food
image analysis. In IEEE Int. Conf. Engineering in Medicine and Biology Society, pages
6869–6872, 2009.

[122] C. K. Martin, J. L. Thomson, M. M. LeBlanc, T. M. Stewart, R. L. Newton, H. Han,
A. Sample, C. M. Champagne, and D. A. Williamson. Children in school cafeterias
select foods containing more saturated fat and energy than the Institute of Medicine
recommendations. J. Nutr., 140(9):1653–1660, Sep 2010.

[123] Takuma Maruyama, Yoshiyuki Kawano, and Keiji Yanai. Real-time mobile recipe
recommendation system using food ingredient recognition. In Proceedings of the 2Nd
ACM International Workshop on Interactive Multimedia on Mobile and Portable De-
vices, IMMPD ’12, pages 27–34, New York, NY, USA, 2012. ACM.

[124] Andrzej Materka, Michal Strzelecki, et al. Texture analysis methods–a review. Techni-
cal university of lodz, institute of electronics, COST B11 report, Brussels, pages 9–11,
1998.

[125] Y. Matsuda, H. Hoashi, and K. Yanai. Recognition of multiple-food images by de-
tecting candidate regions. In Multimedia and Expo (ICME), 2012 IEEE International
Conference on, pages 25–30, July 2012.

[126] I. Matthews, T. Ishikawa, and S. Baker. The template update problem. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 26(6):810–815, June 2004.

[127] Fernando Mendoza, Petr Dejmek, and Jose M. Aguilera. Calibrated color measure-
ments of agricultural foods using image analysis. POSTHARVEST BIOLOGY AND
TECHNOLOGY, 41(3):285–295, SEP 2006.

[128] F. Moreno-Noguer, Alberto Sanfeliu, and D. Samaras. Dependent multiple cue inte-
gration for robust tracking. Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on, 30(4):670–685, April 2008.

Robert J. DiBiano 128

[129] Supratik Mukhopadhyay, Saikat Basu, Robert DiBiano, Malcolm Stagg, Jerry Welt-
man, and Manohar Karki. Computer implemented system and method for high per-
formance visual tracking, 2013. US Patent App. 61/711,102.

[130] Per Munkevik, Gunnar Hall, and Tom Duckett. A computer vision system for
appearance-based descriptive sensory evaluation of meals. Journal of Food Engineering,
78(1):246 – 256, 2007.

[131] P. Nagabhushan and R. Pradeep Kumar. Histogram pca. In Derong Liu, Shumin Fei,
Zengguang Hou, Huaguang Zhang, and Changyin Sun, editors, Advances in Neural
Networks ISNN 2007, volume 4492 of Lecture Notes in Computer Science, pages
1012–1021. Springer Berlin Heidelberg, 2007.

[132] N. Nakano, R. Nishimura, H. Sai, A. Nishizawa, and H. Komatsu. Digital still camera
system for megapixel ccd. Consumer Electronics, IEEE Transactions on, 44(3):581–
586, Aug 1998.

[133] S. Nashat and M. Z. Abdullah. Multi-class colour inspection of baked foods featuring
support vector machine and Wilk’s lambda analysis. JOURNAL OF FOOD ENGI-
NEERING, 101(4):370–380, DEC 2010.

[134] G. Nebehay and R. Pflugfelder. Tlm: Tracking-learning-matching of keypoints. In
Distributed Smart Cameras (ICDSC), 2013 Seventh International Conference on, pages
1–6, Oct 2013.

[135] HieuT. Nguyen and ArnoldW.M. Smeulders. Robust tracking using foreground-
background texture discrimination. International Journal of Computer Vision,
69(3):277–293, 2006.

[136] Kenji Okuma, Ali Taleghani, Nando De Freitas, O De Freitas, James J. Little, and
David G. Lowe. A boosted particle filter: Multitarget detection and tracking. In In
ECCV, pages 28–39, 2004.

[137] Alessandro Oltramari and Christian Lebiere. Using ontologies in a cognitive-grounded
system: Automatic action recognition in video-surveillance. In Paulo Cesar G. da Costa
and Kathryn B. Laskey, editors, STIDS, volume 966 of CEUR Workshop Proceedings,
pages 20–27. CEUR-WS.org, 2012.

[138] David Opitz and Richard Maclin. Popular ensemble methods: An empirical study.
Journal of Artificial Intelligence Research, 11:169–198, 1999.

[139] Sebastian Paessler, Matthias Wolff, andWolf-Joachim Fischer. Food intake monitoring:
an acoustical approach to automated food intake activity detection and classification of
consumed food. PHYSIOLOGICAL MEASUREMENT, 33(6):1073–1093, JUN 2012.

[140] Danny Pascale. Rgb coordinates of the macbeth color checker. 2006.

Robert J. DiBiano 129

[141] Alex P Pentland. Fractal-based description of natural scenes. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, (6):661–674, 1984.

[142] Davide Periquito, JacintoC. Nascimento, Alexandre Bernardino, and Joo Sequeira.
Single camera hand pose estimation from bottom-up and top-down processes. In Se-
bastiano Battiato, Sabine Coquillart, Robert S. Laramee, Andreas Kerren, and Jos
Braz, editors, Computer Vision, Imaging and Computer Graphics – Theory and Appli-
cations, volume 458 of Communications in Computer and Information Science, pages
212–227. Springer Berlin Heidelberg, 2014.

[143] R. Polikar. Ensemble based systems in decision making. Circuits and Systems Maga-
zine, IEEE, 6(3):21–45, Third 2006.

[144] M. Puri, Z. Zhu, J. Lubin, T. Pschar, A. Divakaran, and H.S. Sawhney. Food recog-
nition using visual analysis and speech recognition, July 8 2010. US Patent App.
12/683,124.

[145] M. Puri, Zhiwei Zhu, Qian Yu, A. Divakaran, and H. Sawhney. Recognition and volume
estimation of food intake using a mobile device. In Applications of Computer Vision
(WACV), 2009 Workshop on, pages 1–8, Dec 2009.

[146] D. Ramanan, D.A. Forsyth, and A. Zisserman. Tracking people by learning their ap-
pearance. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 29(1):65–
81, Jan 2007.

[147] Lior Rokach. Ensemble-based classifiers. Artificial Intelligence Review, 33(1-2):1–39,
2010.

[148] P.M. Roth, S. Sternig, H. Grabner, and H. Bischof. Classifier grids for robust adaptive
object detection. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pages 2727–2734, June 2009.

[149] C. Rother, V. Kolmogorov, and A. Blake. GrabCut interactive foreground extraction
using iterated graph cuts. In SIGGRAPH, pages 309–314, 2004.

[150] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. ”grabcut”: Interactive
foreground extraction using iterated graph cuts. ACM Trans. Graph., 23(3):309–314,
August 2004.

[151] A. Saffari, C. Leistner, J. Santner, M. Godec, and H. Bischof. On-line random forests.
In Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International
Conference on, pages 1393–1400, Sept 2009.

[152] Peter Sand and Seth Teller. Particle video: Long-range motion estimation using point
trajectories. International Journal of Computer Vision, 80(1):72–91, 2008.

Robert J. DiBiano 130

[153] Juliana Freitas Santos Gomes and Fabiana Rodrigues Leta. Applications of computer
vision techniques in the agriculture and food industry: a review. EUROPEAN FOOD
RESEARCH AND TECHNOLOGY, 235(6):989–1000, DEC 2012.

[154] Dayanand G. Savakar and Basavaraj S. Anami. Recognition and Classification of Food
Grains, Fruits and Flowers Using Machine Vision. INTERNATIONAL JOURNAL OF
FOOD ENGINEERING, 5(4), 2009.

[155] T. E. Schap, B. L. Six, E. J. Delp, D. S. Ebert, D. A. Kerr, and C. J. Boushey.
Adolescents in the United States can identify familiar foods at the time of consumption
and when prompted with an image 14 h postprandial, but poorly estimate portions.
Public Health Nutr, 14(7):1184–1191, Jul 2011.

[156] Robert E. Schapire. The boosting approach to machine learning: An overview. In
David D. Denison, Mark H. Hansen, Christopher C. Holmes, Bani Mallick, and Bin
Yu, editors, Nonlinear Estimation and Classification, volume 171 of Lecture Notes in
Statistics, pages 149–171. Springer New York, 2003.

[157] J. Shi and C. Tomasi. Good features to track. In Computer Vision and Pattern
Recognition, 1994. Proceedings CVPR ’94., 1994 IEEE Computer Society Conference
on, pages 593–600, Jun 1994.

[158] M. Simonovsky. Ellipse detection using 1d hough transform.
http://www.mathworks.com/matlabcentral/fileexchange/33970-ellipse-detection-
using-1d-hough-transform. Accessed: 03/14/2012.

[159] B. L. Six, T. E. Schap, F. M. Zhu, A. Mariappan, M. Bosch, E. J. Delp, D. S. Ebert,
D. A. Kerr, and C. J. Boushey. Evidence-based development of a mobile telephone
food record. J Am Diet Assoc, 110(1):74–79, Jan 2010.

[160] K. Smith, D. Gatica-Perez, J. Odobez, and Sileye Ba. Evaluating multi-object tracking.
In Computer Vision and Pattern Recognition - Workshops, 2005. CVPR Workshops.
IEEE Computer Society Conference on, pages 36–36, June 2005.

[161] S. Stalder, H. Grabner, and Luc Van Gool. Exploring context to learn scene spe-
cific object detectors. In IEEE International Workshop on Performance Evaluation of
Tracking and Surveillance, Miami, USA, pages 63–70, June 2009.

[162] S. Stalder, H. Grabner, and L. Van Gool. Beyond semi-supervised tracking: Tracking
should be as simple as detection, but not simpler than recognition. In Computer Vision
Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on, pages
1409–1416, Sept 2009.

[163] Chris Stauffer and W.E.L. Grimson. Adaptive background mixture models for real-
time tracking. In Computer Vision and Pattern Recognition, 1999. IEEE Computer
Society Conference on., volume 2, pages –252 Vol. 2, 1999.

Robert J. DiBiano 131

[164] H. Steinhaus. Sur la division des corp materiels en parties. Bull. Acad. Polon. Sci,
1:801–804, 1956.

[165] P. J. Stumbo. New technology in dietary assessment: a review of digital methods in
improving food record accuracy. Proc Nutr Soc, 72(1):70–76, Feb 2013.

[166] P. J. Stumbo, R. Weiss, J. W. Newman, J. A. Pennington, K. L. Tucker, P. L. Wiesen-
feld, A. K. Illner, D. M. Klurfeld, and J. Kaput. Web-enabled and improved software
tools and data are needed to measure nutrient intakes and physical activity for per-
sonalized health research. J. Nutr., 140(12):2104–2115, Dec 2010.

[167] Levon Sukissian, Stefanos Kollias, and Yiannis Boutalis. Adaptive classification of tex-
tured images using linear prediction and neural networks. Signal Process., 36(2):209–
232, March 1994.

[168] M. Swanson. Digital photography as a tool to measure school cafeteria consumption.
J Sch Health, 78(8):432–437, Aug 2008.

[169] Shen-Chuan Tai, Tzu-Wen Liao, Yi-Ying Chang, and Chih Pei Yeh. Automatic white
balance algorithm through the average equalization and threshold. In Information
Science and Digital Content Technology (ICIDT), 2012 8th International Conference
on, volume 3, pages 571–576, June 2012.

[170] Hai Tao, H.S. Sawhney, and Rakesh Kumar. Dynamic layer representation with appli-
cations to tracking. In Computer Vision and Pattern Recognition, 2000. Proceedings.
IEEE Conference on, volume 2, pages 134–141 vol.2, 2000.

[171] Hai Tao, H.S. Sawhney, and Rakesh Kumar. Object tracking with bayesian estimation
of dynamic layer representations. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 24(1):75–89, Jan 2002.

[172] S. Theodoridis and K. Koutroumbas. Pattern recognition. Academic Press, 1999.

[173] F. E. Thompson, A. F. Subar, C. M. Loria, J. L. Reedy, and T. Baranowski. Need for
technological innovation in dietary assessment. J Am Diet Assoc, 110(1):48–51, Jan
2010.

[174] Jeffrey K Uhlmann. Algorithms for multiple-target tracking. American Scientist, pages
128–141, 1992.

[175] M Unser. Sum and difference histograms for texture classification. IEEE Trans. Pattern
Anal. Mach. Intell., 8(1):118–125, January 1986.

[176] Martin Vetterli and Jelena Kovacevic. Wavelets and subband coding. Number LCAV-
BOOK-1995-001. Prentice-hall, 1995.

Robert J. DiBiano 132

[177] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple
features. In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings
of the 2001 IEEE Computer Society Conference on, volume 1, pages I–511–I–518 vol.1,
2001.

[178] Virat public dataset. http://viratdata.org/. Accessed: 2014.

[179] N.S. Visen, N.S. Shashidhar, J. Paliwal, and D.S. Jayas. Identification and segmenta-
tion of occluding groups of grain kernels in a grain sample image. Journal of agricultural
engineering research, 79:159–166, 2001.

[180] Yuji Wada, Daisuke Tsuzuki, Naoki Kobayashi, Fumiyo Hayakawa, and Kaoru Ko-
hyama. Visual illusion in mass estimation of cut food. APPETITE, 49(1):183–190,
JUL 2007.

[181] E.A. Wan and R. Van Der Merwe. The unscented kalman filter for nonlinear estimation.
In Adaptive Systems for Signal Processing, Communications, and Control Symposium
2000. AS-SPCC. The IEEE 2000, pages 153–158, 2000.

[182] J.Y.A. Wang and E.H. Adelson. Layered representation for motion analysis. In Com-
puter Vision and Pattern Recognition, 1993. Proceedings CVPR ’93., 1993 IEEE Com-
puter Society Conference on, pages 361–366, Jun 1993.

[183] J.Y.A. Wang and E.H. Adelson. Representing moving images with layers. Image
Processing, IEEE Transactions on, 3(5):625–638, Sep 1994.

[184] Qing Wang, Feng Chen, Wenli Xu, and Ming-Hsuan Yang. Online discriminative
object tracking with local sparse representation. In Applications of Computer Vision
(WACV), 2012 IEEE Workshop on, pages 425–432, Jan 2012.

[185] Su Wang, Yewei Zhang, Peng Deng, and Fuqiang Zhou. Fast automatic white balancing
method by color histogram stretching. In Image and Signal Processing (CISP), 2011
4th International Congress on, volume 2, pages 979–983, Oct 2011.

[186] R. Weiss, P. J. Stumbo, and A. Divakaran. Automatic food documentation and volume
computation using digital imaging and electronic transmission. J Am Diet Assoc,
110(1):42–44, Jan 2010.

[187] O. Williams, A. Blake, and R. Cipolla. A sparse probabilistic learning algorithm for
real-time tracking. In Computer Vision, 2003. Proceedings. Ninth IEEE International
Conference on, pages 353–360 vol.1, Oct 2003.

[188] D. A. Williamson, H. R. Allen, P. D. Martin, A. Alfonso, B. Gerald, and A. Hunt.
Digital photography: a new method for estimating food intake in cafeteria settings.
Eat Weight Disord, 9(1):24–28, Mar 2004.

http://viratdata.org/

Robert J. DiBiano 133

[189] D. A. Williamson, H. R. Allen, P. D. Martin, A. Alfonso, B. Gerald, and A. Hunt.
Digital photography: A new method for estimating food intake in cafeteria settings.
Eat Weight Disord, 9:24–8, 2004.

[190] D. A. Williamson, H. R. Allen, P. D. Martin, A. J. Alfonso, B. Gerald, and A. Hunt.
Comparison of digital photography to weighed and visual estimation of portion sizes.
J Am Diet Assoc, 103(9):1139–1145, Sep 2003.

[191] David H. Wolpert. The lack of a priori distinctions between learning algorithms. Neural
Comput., 8(7):1341–1390, October 1996.

[192] I. Woo, K. Otsmo, S. Kim, D. S. Ebert, E. J. Delp, and C. J. Boushey. Automatic
portion estimation and visual refinement in mobile dietary assessment. Proc SPIE,
7533, Jan 2010.

[193] Di Wu and Da-Wen Sun. Colour measurements by computer vision for food quality
control - A review. TRENDS IN FOOD SCIENCE & TECHNOLOGY, 29(1):5–20,
JAN 2013.

[194] Xiang Xiang. A brief review on visual tracking methods. In Intelligent Visual Surveil-
lance (IVS), 2011 Third Chinese Conference on, pages 41–44, Dec 2011.

[195] Yonghong Xie and Qiang Ji. A New Efficient Ellipse Detection Method. In Interna-
tional Conference on Pattern Recognition, volume 2, pages 957–960, 2002.

[196] Lei Yan, Cheol-Woo Park, Sang-Ryong Lee, and Choon-Young Lee. New separation al-
gorithm for touching grain kernels based on contour segments and ellipse fitting. JOUR-
NAL OF ZHEJIANG UNIVERSITY-SCIENCE C-COMPUTERS & ELECTRONICS,
12(1):54–61, JAN 2011.

[197] Jun yan Huo, Yi lin Chang, Jing Wang, and Xiao xia Wei. Robust automatic white
balance algorithm using gray color points in images. Consumer Electronics, IEEE
Transactions on, 52(2):541–546, May 2006.

[198] Shulin Yang, Mei Chen, D. Pomerleau, and R. Sukthankar. Food recognition us-
ing statistics of pairwise local features. In Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on, pages 2249–2256, June 2010.

[199] Alper Yilmaz, Omar Javed, and Mubarak Shah. Object tracking: A survey. ACM
Comput. Surv., 38(4), December 2006.

[200] Qian Yu, ThangBa Dinh, and Grard Medioni. Online tracking and reacquisition using
co-trained generative and discriminative trackers. In David Forsyth, Philip Torr, and
Andrew Zisserman, editors, Computer Vision ECCV 2008, volume 5303 of Lecture
Notes in Computer Science, pages 678–691. Springer Berlin Heidelberg, 2008.

Robert J. DiBiano 134

[201] B. Zeisl, C. Leistner, A. Saffari, and H. Bischof. On-line semi-supervised multiple-
instance boosting. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE
Conference on, pages 1879–1879, June 2010.

[202] Chaoxin Zheng, Da-Wen Sun, and Liyun Zheng. Recent developments and applications
of image features for food quality evaluation and inspection - a review. TRENDS IN
FOOD SCIENCE & TECHNOLOGY, 17(12):642–655, 2006.

[203] CX Zheng, DW Sun, and LY Zheng. Recent applications of image texture for evalua-
tion of food qualities - a review. TRENDS IN FOOD SCIENCE & TECHNOLOGY,
17(3):113–128, 2006.

[204] Xiaowei Zhou, Can Yang, and Weichuan Yu. Moving object detection by detecting
contiguous outliers in the low-rank representation. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 35(3):597–610, March 2013.

[205] F. Zhu, M. Bosch, C. J. Boushey, and E. J. Delp. AN IMAGE ANALYSIS SYSTEM
FOR DIETARY ASSESSMENT AND EVALUATION. Proc Int Conf Image Proc,
pages 1853–1856, 2010.

[206] F. Zhu, M. Bosch, N. Khanna, C. J. Boushey, and E. J. Delp. Multilevel Segmentation
for Food Classification in Dietary Assessment. Proc Int Symp Image Signal Process
Anal, pages 337–342, Sep 2011.

[207] F. Zhu, M. Bosch, I. Woo, S. Kim, C. J. Boushey, D. S. Ebert, and E. J. Delp. The
Use of Mobile Devices in Aiding Dietary Assessment and Evaluation. IEEE J Sel Top
Signal Process, 4(4):756–766, Aug 2010.

[208] F. Zhu, A. Mariappan, C. J. Boushey, D. Kerr, K. D. Lutes, D. S. Ebert, and E. J.
Delp. Technology-Assisted Dietary Assessment. Proc SPIE, 6814:681411, Mar 2008.

[209] Jacek M. Zurada, Aleksander Malinowski, and Shiro Usui. Perturbation method for
deleting redundant inputs of perceptron networks. Neurocomputing, 14(2):177 – 193,
1997.

Vita

Robert DiBiano received dual Bachelor of Science degrees in Electrical Engineering and
Computer Science at Lamar University in Beaumont, Texas in May 2004. He continued on
to receive his Masters of Engineering in May 2008. Being highly interested in the field of
image processing, he decided to continue on for a doctorate at Louisiana State University.
There he had an opportunity to be involved in many projects advancing his knowledge in this
area. These included the work discussed in this dissertation as well as aerial terrain analysis
from satellite imagery, a robotic optical dynamic positioning system for navigation, detection
and analysis of events on tracked vehicles and humans, laser materials analysis, laser diode
stress testing, and robotic automation of experiments. Upon graduation, Robert will be one
of the founding members in a startup specializing in deep learning based simulation and
process improvement.

135

	Introduction
	Motivation
	Food Recognition and Portion Size Estimation
	Car and Human Tracking

	Contributions to the Dissertation
	Overview

	Related Work
	Food Analysis
	Agricultural Analysis
	Meal Analysis
	Discussion

	Car and Human Tracking
	Optical Flow
	The Drift Problem
	Early Tracking, the Kalman Filter
	Tracking vs. Detection and Tracking by Detection
	Enhanced Template Matching
	Enhanced Optical Flow
	Enhanced Difference Images
	Layer Representations
	Advanced Filtering
	Machine Learning Based Tracking
	Part Based Models
	Non-Rigid Objects
	Limb Tracking
	Surveillance
	Discussion

	Preliminaries
	Graph cuts segmentation and max-flow min-cut theorem
	Segmentation as Energy MinimizationISI:000172108300002
	Energy minimization as Known Graph ProblemISI:000172108300002
	Graph Cuts
	Muticlass Graph Cuts and Efficient Approximations
	GrabCutsrot04
	Discussion

	Texture Analysis
	Statistical
	Structural
	Transform Based
	Model Based Approaches

	Food Image Analysis for Measuring Food Intake in Free Living Conditions
	Introduction
	Contributions
	Methods and Algorithms
	Preprocessing
	Segmentation
	Classification
	Volume Estimation

	Results
	Discussion
	Main sources of error
	Interesting Cases
	``One versus the rest'' advantages and features

	An Agile Framework For Real-Time Visual Tracking in Videos
	Introduction
	Contributions
	Related Work
	The Proposed Approach
	 Image Stabilization
	 Track Starting
	 The Agile Tracking Framework

	 Implementation of our Approach
	 Results and Comparative Studies
	 Conclusions

	MAPTrack: a Probabilistic Real Time Tracking Framework by Integrating Motion, Appearance and Position Models
	Introduction
	Contributions
	Related Work
	The Proposed Approach
	Image Stabilization
	Automated Track Initialization
	The MAPTrack Framework

	Implementation Details
	Results and Comparative Studies
	Conclusions

	Conclusions and Future Work
	Food Analysis
	Tracking
	Future Work - Food Recognition
	Future Work - Tracking

